MHB Show that the binary number b=0.11…1 with 2003 1’s satisfies 0.99⋅⋅⋅9<b<0.99…9

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Binary
AI Thread Summary
The binary number b = 0.11...1 with 2003 ones is shown to satisfy the inequality 0.99...9 < b < 0.99...9, with the lower bound having 602 decimal digits of 9 and the upper bound having 603. Users express confidence in their calculations, with one relying on a calculator for approximations, while another presents a deductive solution deemed acceptable. The discussion highlights the importance of rigorous proof in mathematical assertions. Overall, the participants agree on the validity of the inequality concerning the binary number. The conversation emphasizes the balance between computational methods and formal proofs in mathematical discussions.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Show that the binary number $b = 0.11 … 1$ with $2003$ $1$’s satisfies

$0.99 ··· 9 < b < 0.99…9$, where the lower bound has $602$ decimal digits $9$,

whereas the upper bound has $603$ decimal digits $9$.
 
Mathematics news on Phys.org
b= 1/2+ 1/4+ ...+ 1/2^{2003}= (1/2)(1+ 1/2+ ...+ 1/2^{2002}

That's a finite geometric sequence. For the general finite geometric sequence S(N)= 1+ a+ a^2+ ...+ a^N, we can write S(N)- 1= a+ a^2+ ...+ a^{N-1}= a(1+ a+ a^2+ a^{N-1}). Add and subtract a^N inside the last parenthese: S(N)- 1= a(1+ a+ a^2+ ...+ a^{N-1}+ a^N- a^N)= a(1+ a+ ^2+ ...+ a^{N-1}+ a^N)- a^{N+1}= aS(N)- a^{N+1}.

That is, S(N)- 1= aS(N)- a^{N+1} so S(N)- aS(N)= (1- a)S(N)= 1- a^{N+1}. S(N)= (1- a^{N+1})/(1- a).

With a= 1/2 and N= 2002, That is (1- 1/2^{2003})/(1- 1/2= 2(1- 1/2^{2003})

b is 1/2 that, 1- 1/2^{2003}
 
Last edited by a moderator:
HallsofIvy said:
b= 1/2+ 1/4+ ...+ 1/2^{2003}= (1/2)(1+ 1/2+ ...+ 1/2^{2002}

That's a finite geometric sequence. For the general finite geometric sequence S(N)= 1+ a+ a^2+ ...+ a^N, we can write S(N)- 1= a+ a^2+ ...+ a^{N-1}= a(1+ a+ a^2+ a^{N-1}). Add and subtract a^N inside the last parenthese: S(N)- 1= a(1+ a+ a^2+ ...+ a^{N-1}+ a^N- a^N)= a(1+ a+ ^2+ ...+ a^{N-1}+ a^N)- a^{N+1}= aS(N)- a^{N+1}.

That is, S(N)- 1= aS(N)- a^{N+1} so S(N)- aS(N)= (1- a)S(N)= 1- a^{N+1}. S(N)= (1- a^{N+1})/(1- a).

With a= 1/2 and N= 2002, That is (1- 1/2^{2003})/(1- 1/2= 2(1- 1/2^{2003})

b is 1/2 that, 1- 1/2^{2003}

Thankyou, HallsofIvy for your contribution,

- which is an important step in the suggested solution, but you still need to consider how to represent the two bounds in an adequate manner and to ensure the validity of the two inequalities. You can make it, I´m sure (Nod)
 
This may not be an acceptable solution since I used my calculator, but I'm quite confident that my calculator with its approximations still proves the assertion.

0.999.. < b < 0.999.. if and only if
1 - 0.999.. > 1 - b > 1 - 0.999.. if and only if
$(1/10)^{602}>(1/2)^{2003}>(1/10)^{603}$ if and only if
$602\ln(10)<2003\ln(2)<603\ln(10)$ if and only if
$602/2003<\ln(2)/\ln(10)<603/2003$. According to my calculator, this is saying:
$0.300549<0.301030<0.301048$
 
Last edited by a moderator:
johng said:
This may not be an acceptable solution since I used my calculator, but I'm quite confident that my calculator with its approximations still proves the assertion.

0.999.. < b < 0.999.. if and only if
1 - 0.999.. > 1 - b > 1 - 0.999.. if and only if
$(1/10)^{602}>(1/2)^{2003}>(1/10)^{603}$ if and only if
$602\ln(10)<2003\ln(2)<603\ln(10)$ if and only if
$602/2003<\ln(2)/\ln(10)<603/2003$. According to my calculator, this is saying:
$0.300549<0.301030<0.301048$

Thankyou, johng, for your solution, which, I think, is fully acceptable, since your deductive steps
all correlate with the suggested solution:

\[0.301 < \log_{10}2 < 0.30103 \\\\ 602 < 2003 \log_{10}2 < 603 \\\\ 10^{602} < 2^{2003} < 10^{603} \\\\ 1-10^{-602} < 1-2^{-2003} < 1 - 10^{-603}\\\\ 0.\underbrace{999..9}_{602} < (0.\underbrace{111..1}_{2003})_2 < 0.\underbrace{999..9}_{603}\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top