Show that the binary number b=0.11…1 with 2003 1’s satisfies 0.99⋅⋅⋅9<b<0.99…9

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Binary
Click For Summary
SUMMARY

The binary number \( b = 0.11\ldots1 \) with 2003 ones is proven to satisfy the inequality \( 0.99\ldots9 < b < 0.99\ldots9 \), where the lower bound has 602 decimal digits of 9 and the upper bound has 603 decimal digits of 9. The discussion highlights the contributions of users HallsofIvy and johng, with johng providing a deductive solution that aligns with the established assertion. Calculators were used for approximation, but the deductive reasoning remains the focal point of the proof.

PREREQUISITES
  • Understanding of binary number representation
  • Knowledge of decimal to binary conversion
  • Familiarity with inequalities and bounds in mathematics
  • Basic proficiency in mathematical proofs and deductive reasoning
NEXT STEPS
  • Study binary fractions and their decimal equivalents
  • Explore the concept of limits and bounds in real analysis
  • Learn about mathematical induction and its applications in proofs
  • Investigate the use of calculators in mathematical approximation and error analysis
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in binary number systems and mathematical proofs will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Show that the binary number $b = 0.11 … 1$ with $2003$ $1$’s satisfies

$0.99 ··· 9 < b < 0.99…9$, where the lower bound has $602$ decimal digits $9$,

whereas the upper bound has $603$ decimal digits $9$.
 
Mathematics news on Phys.org
b= 1/2+ 1/4+ ...+ 1/2^{2003}= (1/2)(1+ 1/2+ ...+ 1/2^{2002}

That's a finite geometric sequence. For the general finite geometric sequence S(N)= 1+ a+ a^2+ ...+ a^N, we can write S(N)- 1= a+ a^2+ ...+ a^{N-1}= a(1+ a+ a^2+ a^{N-1}). Add and subtract a^N inside the last parenthese: S(N)- 1= a(1+ a+ a^2+ ...+ a^{N-1}+ a^N- a^N)= a(1+ a+ ^2+ ...+ a^{N-1}+ a^N)- a^{N+1}= aS(N)- a^{N+1}.

That is, S(N)- 1= aS(N)- a^{N+1} so S(N)- aS(N)= (1- a)S(N)= 1- a^{N+1}. S(N)= (1- a^{N+1})/(1- a).

With a= 1/2 and N= 2002, That is (1- 1/2^{2003})/(1- 1/2= 2(1- 1/2^{2003})

b is 1/2 that, 1- 1/2^{2003}
 
Last edited by a moderator:
HallsofIvy said:
b= 1/2+ 1/4+ ...+ 1/2^{2003}= (1/2)(1+ 1/2+ ...+ 1/2^{2002}

That's a finite geometric sequence. For the general finite geometric sequence S(N)= 1+ a+ a^2+ ...+ a^N, we can write S(N)- 1= a+ a^2+ ...+ a^{N-1}= a(1+ a+ a^2+ a^{N-1}). Add and subtract a^N inside the last parenthese: S(N)- 1= a(1+ a+ a^2+ ...+ a^{N-1}+ a^N- a^N)= a(1+ a+ ^2+ ...+ a^{N-1}+ a^N)- a^{N+1}= aS(N)- a^{N+1}.

That is, S(N)- 1= aS(N)- a^{N+1} so S(N)- aS(N)= (1- a)S(N)= 1- a^{N+1}. S(N)= (1- a^{N+1})/(1- a).

With a= 1/2 and N= 2002, That is (1- 1/2^{2003})/(1- 1/2= 2(1- 1/2^{2003})

b is 1/2 that, 1- 1/2^{2003}

Thankyou, HallsofIvy for your contribution,

- which is an important step in the suggested solution, but you still need to consider how to represent the two bounds in an adequate manner and to ensure the validity of the two inequalities. You can make it, I´m sure (Nod)
 
This may not be an acceptable solution since I used my calculator, but I'm quite confident that my calculator with its approximations still proves the assertion.

0.999.. < b < 0.999.. if and only if
1 - 0.999.. > 1 - b > 1 - 0.999.. if and only if
$(1/10)^{602}>(1/2)^{2003}>(1/10)^{603}$ if and only if
$602\ln(10)<2003\ln(2)<603\ln(10)$ if and only if
$602/2003<\ln(2)/\ln(10)<603/2003$. According to my calculator, this is saying:
$0.300549<0.301030<0.301048$
 
Last edited by a moderator:
johng said:
This may not be an acceptable solution since I used my calculator, but I'm quite confident that my calculator with its approximations still proves the assertion.

0.999.. < b < 0.999.. if and only if
1 - 0.999.. > 1 - b > 1 - 0.999.. if and only if
$(1/10)^{602}>(1/2)^{2003}>(1/10)^{603}$ if and only if
$602\ln(10)<2003\ln(2)<603\ln(10)$ if and only if
$602/2003<\ln(2)/\ln(10)<603/2003$. According to my calculator, this is saying:
$0.300549<0.301030<0.301048$

Thankyou, johng, for your solution, which, I think, is fully acceptable, since your deductive steps
all correlate with the suggested solution:

\[0.301 < \log_{10}2 < 0.30103 \\\\ 602 < 2003 \log_{10}2 < 603 \\\\ 10^{602} < 2^{2003} < 10^{603} \\\\ 1-10^{-602} < 1-2^{-2003} < 1 - 10^{-603}\\\\ 0.\underbrace{999..9}_{602} < (0.\underbrace{111..1}_{2003})_2 < 0.\underbrace{999..9}_{603}\]
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
929
Replies
32
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
7K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K