MHB Show that the elements have the same order

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Elements
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Show that the elements $ab$ and $ba$, with $a,b \in G$ have the same order.
The same stands also for the elements $a$ and $c^{-1}ac$.

I have done the following:

  • Let $m=ord(ab) \Rightarrow (ab)^m=1 \Rightarrow ababab \dots abab=1 $

    Since $a \in G$, $a^{-1} \in G$:

    $\Rightarrow a^{-1}ababab \dots abab=a^{-1} \Rightarrow babab \dots abab=a^{-1} \\ \Rightarrow babab \dots ababa=a^{-1}a \Rightarrow babab \dots ababa=1$

    Since we have still the same number of elements ($2m$), we have that $(ba)^m=1$.

    Therefore, $ord(ab)=ord(ba)$.Is this correct?? (Wondering)
  • Let $ord(a)=m \Rightarrow a^m=1 \tag 1$

    Let $ord(c^{-1}ac)=n \Rightarrow (c^{-1}ac)^n=1 \Rightarrow c^{-1}acc^{-1}ac \dots c^{-1}ac=1 \Rightarrow c^{-1}aa \dots ac=1$

    Since we multiplied $n$ times the element $c^{-1}ac$ at itself, we have that $c^{-1}a^nc=1 \Rightarrow cc^{-1}a^nc=c \Rightarrow a^nc=c \Rightarrow a^ncc^{-1}=c c^{-1} \Rightarrow a^n=1 \tag 2$

    From $(1)$ and $(2)$ we have that $m \mid n$, right ?? But how could I continue to show that $m=n$?? (Wondering)
 
Physics news on Phys.org
$\DeclareMathOperator\ord{ord}$
Hey! :)

mathmari said:
Since we have still the same number of elements ($2m$), we have that $(ba)^m=1$.

Therefore, $\ord(ab)=\ord(ba)$.Is this correct?? (Wondering)

You have proven $\ord(ab)=m \Rightarrow (ba)^m=1$.
That only means that $\ord(ba)|m$.

What more do you need to get $\ord(ab)=\ord(ba)$? (Wondering)
Let $ord(a)=m \Rightarrow a^m=1 \tag 1$

Let $ord(c^{-1}ac)=n \Rightarrow (c^{-1}ac)^n=1 \Rightarrow c^{-1}acc^{-1}ac \dots c^{-1}ac=1 \Rightarrow c^{-1}aa \dots ac=1$

Since we multiplied $n$ times the element $c^{-1}ac$ at itself, we have that $c^{-1}a^nc=1 \Rightarrow cc^{-1}a^nc=c \Rightarrow a^nc=c \Rightarrow a^ncc^{-1}=c c^{-1} \Rightarrow a^n=1 \tag 2$

From $(1)$ and $(2)$ we have that $m \mid n$, right ?? But how could I continue to show that $m=n$?? (Wondering)

You have effectively started from $\ord(c^{-1}ac)=n$ to show that $\ord(a)|n$.
Suppose you start from $\ord(a) = m$, what does that mean for $\ord(c^{-1}ac)$? (Wondering)
 
I like Serena said:
$\DeclareMathOperator\ord{ord}$
You have proven $\ord(ab)=m \Rightarrow (ba)^m=1$.
That only means that $\ord(ba)|m$.

What more do you need to get $\ord(ab)=\ord(ba)$? (Wondering)

$m=\ord(ab), n=\ord(ba)$

$(ab)^m=1 \Rightarrow (ba)^m=1 \Rightarrow n \mid m$

$(ba)^n=1 \Rightarrow bababa \dots baba=1 \Rightarrow bababa \dots baba=a^{-1}=a^{-1} \Rightarrow bababa \dots bab=a^{-1} \\ \Rightarrow abababa \dots bab=aa^{-1} \Rightarrow abababa \dots bab=1 \Rightarrow (ab)^n=1 \Rightarrow m \mid n$

From $n \mid m$ and $m \mid n$ we have that $n=cm$, right?? How can I show that $c=1$ such that $n=m$?? (Wondering)

Is the way I show it correct or is there a better way to prove it?? (Malthe)
I like Serena said:
You have effectively started from $\ord(c^{-1}ac)=n$ to show that $\ord(a)|n$.
Suppose you start from $\ord(a) = m$, what does that mean for $\ord(c^{-1}ac)$? (Wondering)

I have to show also that $n \mid m$, right??

$a^m=1 \Rightarrow aa \dots aa=1 \Rightarrow acc^{-1}acc^{-1}a \dots cc^{-1}acc^{-1}a=1=cc^{-1} \\ \Rightarrow c^{-1}acc^{-1}acc^{-1}a \dots cc^{-1}acc^{-1}ac=c^{-1}cc^{-1}c \Rightarrow c^{-1}acc^{-1}acc^{-1}a \dots cc^{-1}acc^{-1}ac=1$

Are there $m$ terms of $c^{-1}ac$ ?? (Wondering)
 
$\DeclareMathOperator\ord{ord}$
mathmari said:
$m=\ord(ab), n=\ord(ba)$

$(ab)^m=1 \Rightarrow (ba)^m=1 \Rightarrow n \mid m$

$(ba)^n=1 \Rightarrow bababa \dots baba=1 \Rightarrow bababa \dots baba=a^{-1}=a^{-1} \Rightarrow bababa \dots bab=a^{-1} \\ \Rightarrow abababa \dots bab=aa^{-1} \Rightarrow abababa \dots bab=1 \Rightarrow (ab)^n=1 \Rightarrow m \mid n$

From $n \mid m$ and $m \mid n$ we have that $n=cm$, right?? How can I show that $c=1$ such that $n=m$?? (Wondering)

Is the way I show it correct or is there a better way to prove it?? (Malthe)

We have:
$$n \mid m \Rightarrow n\le m$$
$$m \mid n \Rightarrow m\le n$$
It follows that:
$$m=n$$
(Emo)

I have to show also that $n \mid m$, right??

$a^m=1 \Rightarrow aa \dots aa=1 \Rightarrow acc^{-1}acc^{-1}a \dots cc^{-1}acc^{-1}a=1=cc^{-1} \\ \Rightarrow c^{-1}acc^{-1}acc^{-1}a \dots cc^{-1}acc^{-1}ac=c^{-1}cc^{-1}c \Rightarrow c^{-1}acc^{-1}acc^{-1}a \dots cc^{-1}acc^{-1}ac=1$

Are there $m$ terms of $c^{-1}ac$ ?? (Wondering)

Yep! (Mmm)
 
I like Serena said:
We have:
$$n \mid m \Rightarrow n\le m$$
$$m \mid n \Rightarrow m\le n$$
It follows that:
$$m=n$$
(Emo)

Ahaa.. Ok! (Smile)
I like Serena said:
Yep! (Mmm)

So we have $(c^{-1}ac)^m=1$.
$\Rightarrow n \mid m$

Therefore,
$$n \mid m \Rightarrow n\le m$$
$$m \mid n \Rightarrow m\le n$$

$$ \Rightarrow m=n$$
Is it the only way to prove the sentence?? (Wondering)
 
I find it easier to use this fact, for any $m \geq 0$:

$(ba)^{m+1} = b(ab)^ma$ (can you prove this using induction?).

Now if $(ab)^m = 1$, then:

$(ba)^{m+1} = b(ab)^ma = ba$.

Multiplying both sides by $a^{-1}b^{-1}$ we get:

$(ba)^m = 1$.

Suppose that for some $0 < k < m$, we have:

$(ba)^k = 1$.

It follows that:

$a(ba)^kb = ab$, but the LHS is: $(ab)^{k+1}$, so this is:

$(ab)^{k+1} = ab$, and multiplying by $b^{-1}a^{-1}$ on both sides, we have:

$(ab)^k = 1$. This is a contradiction, since $0 < k < m$, and $m$ is the SMALLEST positive integer for which:

$(ab)^m = 1$.

So we know that:

(1) the order of $ba$ divides $m$.
(2) the order of $ba$ is not less than $m$.

The only positive integer which qualifies is $m$.

It is also handy to remember that:

$(cac^{-1})^k = ca^kc^{-1}$ (this can also be proved by induction).

So if the order of $a$ is $m$, then:

$(cac^{-1})^m = ca^mc^{-1} = cc^{-1} = 1$.

So the order of $cac^{-1}$ divides $m$, so is at MOST $m$.

Again, suppose that $(cac^{-1})^k = 1$, for some $0 < k < m$.

Then $ca^kc^{-1} = 1$ so that:

$a^kc^{-1} = c^{-1}$

$a^k = c^{-1}c = 1$, which is impossible.

***************************

In other words, to show $m = n$ when $n|m$, we can show that $m|n$, OR:

we can show that $0 < n < m$ is not possible.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
12
Views
2K
Replies
13
Views
576
Replies
16
Views
4K
Replies
4
Views
2K
Replies
18
Views
2K
Replies
10
Views
1K
Replies
10
Views
2K
Replies
19
Views
2K
Replies
52
Views
3K
Back
Top