MHB Show that the function is the solution

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
The discussion focuses on proving that the solution to the heat equation with initial condition $\phi(x)$ is given by the integral formula involving the heat kernel $\Gamma(t,x-\xi)$. It establishes that the solution satisfies the equation $u_t - \Delta u = 0$ and shows that as time approaches zero, the solution converges to the initial condition, $u(0,x) = \phi(x)$. Participants explore the implications of continuity and boundedness of $\phi$, discussing the application of generalized integrals and the necessity of using Lebesgue integration for functions defined over $\mathbb{R}^n$. The conversation also delves into the mathematical rigor behind the inequalities and the conditions necessary for the convergence of the integrals involved. The thread concludes with inquiries about generalizing the integration techniques discussed to higher dimensions.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Theorem: Suppose that $\phi(x)$ is continuous and bounded in $\mathbb{R}^n$, then the solution of the problem

$$u_t=\Delta u \text{ in } (0,T) \times \mathbb{R}^n , \forall T>0 \\ u(0,x)=\phi(x), x \in \mathbb{R}^n$$

is given by the formula $u(t,x)=\int_{\mathbb{R}^n} \Gamma(t,x-\xi) \phi(\xi) d{\xi}$.

We have that $\Gamma(t-\tau,x- \xi)=\frac{1}{2^n [\pi(t-\tau)]^{\frac{n}{2}}} e^{-\frac{|x-\xi|^2}{4 (t-\tau)}}$.

We can see that $\Gamma_t-\Delta_x \Gamma=0$ and so we get that $u_t-\Delta u=0, \forall t>0$.

In order to show that $u(0,x)=\phi(x)$ we consider the difference $u(t,x)-\phi(x)$.

$u(t,x)-\phi(x)=\int_{\mathbb{R}^n} \Gamma(t,x-\xi) [\phi(\xi)-\phi(x)] d{\xi}$.

We set $\xi_i-x_i=2 \sqrt{t} \sigma_i, i=1, \dots, n$ and we get $u(t,x)-\phi(x)=\pi^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{-|\sigma|^2} [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] d{\sigma}$.

Let $Q_R=\{ |\sigma|<R\}$,

then $u(t,x)-\phi(x)=\pi^{-\frac{n}{2}} \int_{Q_R} e^{-|\sigma|^2} [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] d{\sigma}+\pi^{-\frac{n}{2}} \int_{\mathbb{R}^n \setminus{Q_R}} e^{-|\sigma|^2} [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] d{\sigma}(\star)$

From the definition of the generalized integral $\forall \epsilon>0$ there exists a $R>0$ such that $\pi^{-\frac{n}{2}} \left| \int_{\mathbb{R}^n \setminus{Q_R}} e^{-|\sigma|^2 } [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] d{\sigma} \right| \leq \frac{\epsilon}{2}$.

Since $\phi$ is continuous for a given $R>0$ there is a $\delta>0$ such that for $0<t<\delta$ it holds that

$\pi^{-\frac{n}{2}} \int_{Q_R} e^{-|\sigma|^2} |\phi(x+2 \sqrt{t}\sigma)-\phi(x)| d{\sigma} \leq \frac{\epsilon}{2}$

So from the $(\star)$ we will have that $\forall \epsilon>0$ there is a $\delta>0$ such that $|u(t,x)-\phi(x)| \leq \epsilon$ if $0<t< \delta$, i.e. $\lim_{t \to 0} u(t,x)=\phi(x)$.First of all, I have found that the definition of the generalized Riemann integral is the following:

View attachment 6357

In our case, at the integral where we use this definition , we have an open set, namely this one $\mathbb{R}^n \setminus{Q_R}$. Do we pick an arbitrary $[a,b] \in \mathbb{R}^n \setminus{Q_R}$ and consider a partition of it?

If so, then we have that for each $\epsilon>0$ there is a $R>0$ such that for every partition of $[a,b]$

$a=x_0 < x_1< x_2< \dots<x_n=b$

with tags $x_{k-1} \leq t_k \leq x_k, k=0,1, \dots,n$ we have $$\left| \int_{\mathbb{R}^n \setminus{Q_R}} e^{-|\sigma|^2} [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] d{\sigma}- \sum_{k=1}^n e^{-|\sigma|^2} [\phi(x+2 \sqrt{t} t_k)-\phi(x)] (x_k-x_{k-1}) \right|< \epsilon$$

whenever $x_k-x_{k-1}<R$.Do we pick now $x_k-x_{k-1} \to 0$ in order to get the inequality for the integral?

Also, in order to get the following inequality:$\pi^{-\frac{n}{2}} \int_{Q_R} e^{-|\sigma|^2} |\phi(x+2 \sqrt{t}\sigma)-\phi(x)| d{\sigma} \leq \frac{\epsilon}{2}$we use the continuity of $\phi$, so for each $\epsilon>0, \exists \delta'>0$ such that if $0< x+ 2\sqrt{t} \sigma-x=2 \sqrt{t} \sigma< \delta'$ we have that $|\phi(x+ 2 \sqrt{t} \sigma)-\phi(x)| \leq \epsilon$.

Then $\pi^{-\frac{n}{2}} \int_{Q_R} e^{-|\sigma|^2} |\phi(x+2 \sqrt{t} \sigma)-\phi(x)|d{\sigma} \leq \pi^{-\frac{n}{2}} \epsilon \int_{Q_R} e^{-|\sigma|^2} d{\sigma} \leq \pi^{-\frac{n}{2}} \epsilon \int_{\mathbb{R}^n} e^{-|\sigma|^2} d{\sigma}=\epsilon$.

Right? Do we set $\delta=\frac{\delta'^2}{4 \sigma^2}$ ?

Also does the first inequality hold for any $t$ and so also for $0<t< \delta$? (Thinking)
 

Attachments

  • def.PNG
    def.PNG
    12.4 KB · Views: 149
Physics news on Phys.org
Hi evinda! (Smile)

I believe you've quoted the definition of a non-generalized Riemann integral.
However, it only applies to functions with a domain that is an interval in $\mathbb R$.

Shouldn't we look at a multiple integral, since we have a function with a domain in $\mathbb R^n$? (Wondering)

Or actually the Lesbesgue integral that applies to functions on any domain? (Wondering)
Note that your integral is of the form $\int f\,d\mu$.
 
I like Serena said:
Hi evinda! (Smile)

I believe you've quoted the definition of a non-generalized Riemann integral.
However, it only applies to functions with a domain that is an interval in $\mathbb R$.

Shouldn't we look at a multiple integral, since we have a function with a domain in $\mathbb R^n$? (Wondering)

Or actually the Lesbesgue integral that applies to functions on any domain? (Wondering)
Note that your integral is of the form $\int f\,d\mu$.

Ok... where can we find the $\epsilon, \delta$-proof of these integrals?
 
evinda said:
Let $Q_R=\{ |\sigma|<R\}$,

From the definition of the generalized integral $\forall \epsilon>0$ there exists a $R>0$ such that $\pi^{-\frac{n}{2}} \left| \int_{\mathbb{R}^n \setminus{Q_R}} e^{-|\sigma|^2 } [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] d{\sigma} \right| \leq \frac{\epsilon}{2}$.

How about we calculate it as:
$$\pi^{-\frac{n}{2}} \left| \int_{\mathbb{R}^n \setminus{Q_R}} e^{-|\sigma|^2 } [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] d{\sigma} \right|
= \pi^{-\frac{n}{2}} \left| \int_{r=R}^\infty\int_{\sigma\in\partial{Q_r}} e^{-|\sigma|^2 } [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] \,ds\,dr\right| \\
\le \pi^{-\frac{n}{2}} \left| \int_{R}^\infty e^{-r^2 }\cdot 2M \cdot w_nr^{n-1}\,dr\right|
$$
(Wondering)

Now it's a Riemann Integral. (Happy)
 
I like Serena said:
How about we calculate it as:
$$\pi^{-\frac{n}{2}} \left| \int_{\mathbb{R}^n \setminus{Q_R}} e^{-|\sigma|^2 } [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] d{\sigma} \right|
= \pi^{-\frac{n}{2}} \left| \int_{r=R}^\infty\int_{\sigma\in\partial{Q_r}} e^{-|\sigma|^2 } [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] \,ds\,dr\right| \\
\le \pi^{-\frac{n}{2}} \left| \int_{R}^\infty e^{-r^2 }\cdot 2M \cdot w_nr^{n-1}\,dr\right|
$$
(Wondering)

Now it's a Riemann Integral. (Happy)

Why does the equality you write hold? Namely this one:

$$\pi^{-\frac{n}{2}} \left| \int_{\mathbb{R}^n \setminus{Q_R}} e^{-|\sigma|^2 } [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] d{\sigma} \right|
= \pi^{-\frac{n}{2}} \left| \int_{r=R}^\infty\int_{\sigma\in\partial{Q_r}} e^{-|\sigma|^2 } [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] \,ds\,dr\right|$$
 
evinda said:
Why does the equality you write hold? Namely this one:

$$\pi^{-\frac{n}{2}} \left| \int_{\mathbb{R}^n \setminus{Q_R}} e^{-|\sigma|^2 } [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] d{\sigma} \right|
= \pi^{-\frac{n}{2}} \left| \int_{r=R}^\infty\int_{\sigma\in\partial{Q_r}} e^{-|\sigma|^2 } [\phi(x+2 \sqrt{t} \sigma)-\phi(x)] \,ds\,dr\right|$$

Let's pick an example.
Suppose we pick the 1-sphere and integrate some $f(\sigma)$ from $R$ to $\infty$.

Then it looks like:
\begin{tikzpicture}[scale=0.7]
\draw[->] (0,0) -- (40:3) node
{R};
\draw[blue, ultra thick] circle (3);
\draw[gray, thin] circle (5) circle (6);
\path[blue, ultra thick] (50:5) -- node[below left] {$ds$} (70:5) -- node
{$dr$} (70:6) -- node[below] {$d\sigma$} (50:6) -- cycle;
\draw[blue, ultra thick] (50:5) arc (50:70:5) -- node
{$dr$} (70:6) arc (70:50:6) -- cycle;
\end{tikzpicture}
We have a "volume" element $d\sigma$ in a ball that is equal to a "surface" element $ds$ on the corresponding sphere times $dr$.
So:
$$\int_{\mathbb R^2 \setminus B_R} f(\sigma)\,d\sigma
= \int_R^\infty \int_0^{2\pi} f(\sigma)\,rd\phi\,dr
= \int_R^\infty \int_{\partial B_r} f(\sigma)\,ds\,dr
$$

Can we generalize it to $\mathbb R^n$ with an $(n-1)$-sphere? (Wondering)​
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K
Replies
17
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
8
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K