MHB Show that there are vectors to get a basis

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Basis Vectors
Click For Summary
The discussion focuses on proving that a set of linearly independent vectors in a subspace can be extended to form a basis for that subspace. It begins by establishing that if the number of independent vectors \( k \) is less than the dimension \( m \) of the subspace \( U \), there exists at least one vector in \( U \) that is not in the span of the existing vectors. The participants explore using induction to show that this additional vector can be added to the independent set, maintaining linear independence. The proof strategy involves a base case and an inductive step, ultimately demonstrating that the independent set can be extended until it reaches the dimension of \( U \). The conversation concludes with clarification on the nature of the induction used in the proof.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $1\leq k,m,n\in \mathbb{N}$, $V:=\mathbb{R}^n$ and $U$ a subspace of $V$ with $\dim_{\mathbb{R}}U=m$. Let $u_1, \ldots , u_k\in U$ be linear independent. Show that there are vectors $u_{k+1}, \ldots , u_m\in U$ such that $(u_1, \ldots , u_m)$ is a basis of $U$.

Hint: Use the following two statements. Convince that $\ell:=m-k\geq 0$ and use induction on $\ell$. Statement 1:
Let $1\leq k\in \mathbb{N}$ and $v_1, \ldots v_k, w\in V$.
  1. $1\leq m\in \mathbb{N}$ and $w_1, \ldots , w_m\in V$ such that $\text{Lin}(v_1, \ldots , v_k)=\text{Lin}(w_1, \ldots , w_m)$ then it holds that $\text{Lin}(v_1, \ldots , v_k, w)=\text{Lin}(w_1, \ldots , w_m, w)$.
  2. If the vectors $v_1, \ldots , v_k$ are linear independent and $w\notin \text{Lin}(v_1, \ldots , v_k)$ then also the vectors $v_1, \ldots , v_k, w$ are linear independent.

Statement 2:
Let $U\leq_{R}V$ and $W\leq_{R}V$ such that $W\subseteq U$. Then it holds that $\dim_RW\leq \dim_RU$ and the equality iff $W=U$. So to use Statement 1 we have to show that $u_{k+1}, \ldots , u_m\notin \text{Lin}(u_1, \ldots , u_k)$ and then we apply the Statement 1 using induction or how do we have to start? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Hey mathmari!

If $k=m$ then we are done, aren't we? (Wondering)
So let's assume that $k<m$.

Base case
$(u_1, \ldots , u_k)$ cannot be a basis of $U$ can it?
Because if it were then the dimension of $U$ would be $k$ instead of $m$, and we just assumed that $k<m$.
So there must be a vector $w$ in $U$ that is not an element of the linear span of $(u_1, \ldots , u_k)$, mustn't there?
What we can do with that element? (Thinking)
 
Klaas van Aarsen said:
If $k=m$ then we are done, aren't we? (Wondering)
So let's assume that $k<m$.

Base case
$(u_1, \ldots , u_k)$ cannot be a basis of $U$ can it?
Because if it were then the dimension of $U$ would be $k$ instead of $m$, and we just assumed that $k<m$.
So there must be a vector $w$ in $U$ that is not an element of the linear span of $(u_1, \ldots , u_k)$, mustn't there?
What we can do with that element? (Thinking)

From the second part of statement 1 we get that $u_1, \ldots , u_k,w$ are linear independent.
So now we consider the linear span of $(u_1, \ldots , u_k,w)$, or not?
At the base case we have that $\ell=m-k=1$, or not? So we have to add just one vector to get a basis, which is $w$, right? (Wondering)
 
mathmari said:
From the second part of statement 1 we get that $u_1, \ldots , u_k,w$ are linear independent.
So now we consider the linear span of $(u_1, \ldots , u_k,w)$, or not?

Yep. (Nod)

mathmari said:
At the base case we have that $\ell=m-k=1$, or not? So we have to add just one vector to get a basis, which is $w$, right?

Hmm... not sure if we can make it work like that. (Thinking)

I had the idea that for the inductive step we would assume that we could extend the independent set $(u_1, \ldots , u_k)$ to the independent set $(u_1, \ldots , u_\ell)$ with vectors that are all in $U$ and with $k\le \ell < m$. (Thinking)
 
Klaas van Aarsen said:
Yep. (Nod)

Hmm... not sure if we can make it work like that. (Thinking)

I had the idea that for the inductive step we would assume that we could extend the independent set $(u_1, \ldots , u_k)$ to the independent set $(u_1, \ldots , u_\ell)$ with vectors that are all in $U$ and with $k\le \ell < m$. (Thinking)

So do you mean that at the base case we extend the independent set $(u_1, \ldots , u_k)$ to the independent set $(u_1, \ldots , u_k, w)$ then at the inductive hypothesis we assume that we can extend the independent set $(u_1, \ldots , u_k)$ to the independent set $(u_1, \ldots , u_\ell)$ with $k\le \ell < m$ and at the inductive step we extend the independent set $(u_1, \ldots , u_k)$ to the independent set $(u_1, \ldots , u_m)$ ? (Wondering)
 
mathmari said:
So do you mean that at the base case we extend the independent set $(u_1, \ldots , u_k)$ to the independent set $(u_1, \ldots , u_k, w)$ then at the inductive hypothesis we assume that we can extend the independent set $(u_1, \ldots , u_k)$ to the independent set $(u_1, \ldots , u_\ell)$ with $k\le \ell < m$

Yep. (Nod)

mathmari said:
and at the inductive step we extend the independent set $(u_1, \ldots , u_k)$ to the independent set $(u_1, \ldots , u_m)$ ?

Shouldn't we extend the independent set $(u_1, \ldots , u_\ell)$ from the induction hypothesis to the independent set $(u_1, \ldots , u_\ell, w)$? (Wondering)
 
Klaas van Aarsen said:
Yep. (Nod)

Is this a strong induction on $\ell$ ? (Wondering)
Klaas van Aarsen said:
Shouldn't we extend the independent set $(u_1, \ldots , u_\ell)$ from the induction hypothesis to the independent set $(u_1, \ldots , u_\ell, w)$? (Wondering)

So we add just one extra vector, right? (Wondering)
 
mathmari said:
Is this a strong induction on $\ell$ ?

Not really. (Shake)
What makes you think so?

mathmari said:
So we add just one extra vector, right?

Yep. (Nod)
 
Klaas van Aarsen said:
Not really. (Shake)
What makes you think so?

I thought so because we took $k\le \ell < m$. Could you explain to me further what we assume at the inductive hypothesis? How many vectors to we add to the span? (Wondering)
 
  • #10
mathmari said:
I thought so because we took $k\le \ell < m$. Could you explain to me further what we assume at the inductive hypothesis? How many vectors to we add to the span? (Wondering)

I was thinking of the following proof by induction. (Thinking)

Base case
The set $(u_1,\ldots,u_\ell)$ with $\ell=k \le m$ is a linearly independent set.

Inductive hypothesis
We can extend the independent set $(u_1,\ldots,u_k)$ to an independent set $(u_1,\ldots,u_\ell)$ with all vectors in $U$ and with $k\le\ell\le m$.

Inductive step
If $\ell = m$ we are done as we have the desired set of vectors.
Otherwise $\ell<m$ so there must be a vector $w\in U$ that is not in the linear span of $(u_1,\ldots,u_\ell)$, since the dimension of $U$ is greater than $\ell$.
So we can take $u_{\ell+1}=w$ and $(u_1,\ldots,u_\ell,u_{\ell+1})$ is then an independent set with all vectors in $U$ and with $k\le\ell+1\le m$.

The fact that we can keep extending the independent set until $\ell=m$ completes the proof. (Emo)

Note that we take only 1 step at a time, and in particular we do not use that $(u_1,\ldots,u_{\tilde\ell})$ with $k\le\tilde\ell<\ell$ is an independent set, which would otherwise make it strong induction. (Nerd)
 

Similar threads

Replies
3
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K