MHB Show that there are y,z such that y,z commute and their order is m and n

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Commute
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I got stuck at the following exercise:

If $x \in G$ has order $mn$ with $ (m,n)=1 $, show that there are $y,z$ with $ x=yz $ such that $y$,$z$ commute and they have order $m$ and $n$ respectively.

Could you give me some hints?? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

I got stuck at the following exercise:

If $x \in G$ has order $mn$ with $ (m,n)=1 $, show that there are $y,z$ with $ x=yz $ such that $y$,$z$ commute and they have order $m$ and $n$ respectively.

Could you give me some hints?? (Wondering)
Hint: think about powers of $x$.
 
Another hint: Since $(m,n) = 1$, there are integers $s$ and $t$ such that $1 = sm + tn$.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top