Show that ##(x-a)(x-b)=b^2## has real roots- Quadratics

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Roots
Click For Summary

Homework Help Overview

The discussion revolves around the quadratic equation derived from the expression \((x-a)(x-b) = b^2\). Participants explore the conditions under which this equation has real roots, focusing on the discriminant and various approaches to proving the assertion.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Some participants discuss the discriminant condition for real roots and how it applies to the expanded form of the equation. Others suggest differentiating between coefficients and rearranging the equation to analyze the discriminant further. There are mentions of geometric interpretations and the implications of shifting a parabola downwards.

Discussion Status

The discussion is active, with various approaches being explored. Some participants have provided insights into the discriminant and its implications, while others are questioning the validity of certain steps or seeking further clarification on specific inequalities. There is no explicit consensus yet, but multiple lines of reasoning are being examined.

Contextual Notes

Participants are navigating the definitions of coefficients in the context of quadratic equations and are considering the implications of assumptions made in the problem setup. There is a focus on ensuring clarity in the mathematical expressions used.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
Show that ##(x-a)(x-b)=b^2## has real roots
Relevant Equations
discriminant
If we have a quadratic equation, ##px^2+qx+d## then it follows that for real roots; The discriminant
## D= q^2-4pd≥0## therefore on expanding ##(x-a)(x-b)=b^2## we get,
##x^2-bx-ax+ab-b^2=0##
##a^2+2ab+b^2-4ab+4b^2≥0##
##a^2-2ab+b^2+4b^2≥0##,
##(a-b)^2+4b^2≥0##
since, ##(a-b)^2 ≥0## and ##4b^2≥0## is true for any value of ##a,b ∈ℝ## then our proof is complete. Thanks guys Bingo!:cool:
Is there another way of proving this?
 
Last edited:
Physics news on Phys.org
First, please differentiate between the coefficients ##A, B, C## of the general equation ##Ax^2+Bx+C=0## and those (##a,b,c##) of yours.
Rearrange your equation and apply the real condition for the discriminant and see where that leads you.
 
  • Like
Likes   Reactions: PeroK
Another approach. There's an obvious value of ##x## such that ##y=(x-a)(x-b)-b^2## has a point lying below the x axis. It also has a positive ##x^2,## coefficient, so just intersect the x-axis in two places.

For your method, do you know how to actually prove the last line is true? It's not a super tricky inequality, but I think requires justification.
 
  • Like
Likes   Reactions: chwala and PeroK
Office_Shredder said:
Another approach. There's an obvious value of ##x## such that ##y=(x-a)(x-b)-b^2## has a point lying below the x axis. It also has a positive ##x^2,## coefficient, so just intersect the x-axis in two places.

For your method, do you know how to actually prove the last line is true? It's not a super tricky inequality, but I think requires justification.
Yes. I don't want to give it away for the OP @chwala to see how it is, but the discriminant (##\mathscr{D} = B^2-4AC##) came as a sum of two squares in the end and therefore has to be greater than or equal to 0.
 
  • Like
Likes   Reactions: chwala
brotherbobby said:
First, please differentiate between the coefficients ##A, B, C## of the general equation ##Ax^2+Bx+C=0## and those (##a,b,c##) of yours.
Rearrange your equation and apply the real condition for the discriminant and see where that leads you.
I will look into this later...
 
If we have a quadratic equation, ##px^2+qx+d## then it follows that for real roots; The discriminant
## D= q^2-4pd≥0## therefore on expanding ##(x-a)(x-b)=b^2## we get,
##x^2-bx-ax+ab-b^2=0##
##a^2+2ab+b^2-4ab+4b^2≥0##
##a^2-2ab+b^2+4b^2≥0##,
##(a-b)^2+4b^2≥0##
since, ##(a-b)^2 ≥0## and ##4b^2≥0## is true for any value of ##a,b ∈ℝ## then our proof is complete. Thanks guys Bingo!:cool:
 
  • Like
Likes   Reactions: brotherbobby
There is a simple ‘geometrical’ view which shows the proposition is obviously true. It may be equivalent to what @Office_Shredder said in Post #3.

y = (x-a)(x-b) is an ‘upright’ parabola with real roots (x=a and x=b). So its vertex is always below the x-axis.

Shifting the parabola in the downwards (-y direction) by an amount S (S≥0) gives a new parabola, y = (x-a)(x-b) – S.

This new parabola must also have real roots because the (downwards-shifted, upright) parabola must still intersect the x-axis at two points.

That means (x-a)(x-b) = S always has real roots (provided S≥0).
 
  • Like
Likes   Reactions: chwala

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 27 ·
Replies
27
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K