Show that ##(x-a)(x-b)=b^2## has real roots- Quadratics

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Roots
Click For Summary
SUMMARY

The discussion centers on proving that the quadratic equation ##(x-a)(x-b)=b^2## has real roots. The proof utilizes the discriminant condition, where ##D = q^2 - 4pd ≥ 0##, and expands the equation to show that ##(a-b)^2 + 4b^2 ≥ 0## holds true for any real values of ##a## and ##b##. Participants also explore alternative methods, including geometric interpretations of the parabola and the implications of shifting it downward, confirming that the equation maintains real roots under specified conditions.

PREREQUISITES
  • Understanding of quadratic equations and their standard form, ##Ax^2 + Bx + C = 0##.
  • Familiarity with the discriminant and its role in determining the nature of roots.
  • Basic knowledge of algebraic manipulation and inequalities.
  • Conceptual grasp of parabolas and their geometric properties.
NEXT STEPS
  • Study the properties of the discriminant in quadratic equations, specifically ##D = B^2 - 4AC##.
  • Learn about the geometric interpretation of parabolas and their vertex forms.
  • Explore alternative proof techniques for quadratic equations, including graphical methods.
  • Investigate the implications of shifting parabolas and their effects on real roots.
USEFUL FOR

Mathematicians, educators, and students studying algebra, particularly those focused on quadratic equations and their properties.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
Show that ##(x-a)(x-b)=b^2## has real roots
Relevant Equations
discriminant
If we have a quadratic equation, ##px^2+qx+d## then it follows that for real roots; The discriminant
## D= q^2-4pd≥0## therefore on expanding ##(x-a)(x-b)=b^2## we get,
##x^2-bx-ax+ab-b^2=0##
##a^2+2ab+b^2-4ab+4b^2≥0##
##a^2-2ab+b^2+4b^2≥0##,
##(a-b)^2+4b^2≥0##
since, ##(a-b)^2 ≥0## and ##4b^2≥0## is true for any value of ##a,b ∈ℝ## then our proof is complete. Thanks guys Bingo!:cool:
Is there another way of proving this?
 
Last edited:
Physics news on Phys.org
First, please differentiate between the coefficients ##A, B, C## of the general equation ##Ax^2+Bx+C=0## and those (##a,b,c##) of yours.
Rearrange your equation and apply the real condition for the discriminant and see where that leads you.
 
  • Like
Likes   Reactions: PeroK
Another approach. There's an obvious value of ##x## such that ##y=(x-a)(x-b)-b^2## has a point lying below the x axis. It also has a positive ##x^2,## coefficient, so just intersect the x-axis in two places.

For your method, do you know how to actually prove the last line is true? It's not a super tricky inequality, but I think requires justification.
 
  • Like
Likes   Reactions: chwala and PeroK
Office_Shredder said:
Another approach. There's an obvious value of ##x## such that ##y=(x-a)(x-b)-b^2## has a point lying below the x axis. It also has a positive ##x^2,## coefficient, so just intersect the x-axis in two places.

For your method, do you know how to actually prove the last line is true? It's not a super tricky inequality, but I think requires justification.
Yes. I don't want to give it away for the OP @chwala to see how it is, but the discriminant (##\mathscr{D} = B^2-4AC##) came as a sum of two squares in the end and therefore has to be greater than or equal to 0.
 
  • Like
Likes   Reactions: chwala
brotherbobby said:
First, please differentiate between the coefficients ##A, B, C## of the general equation ##Ax^2+Bx+C=0## and those (##a,b,c##) of yours.
Rearrange your equation and apply the real condition for the discriminant and see where that leads you.
I will look into this later...
 
If we have a quadratic equation, ##px^2+qx+d## then it follows that for real roots; The discriminant
## D= q^2-4pd≥0## therefore on expanding ##(x-a)(x-b)=b^2## we get,
##x^2-bx-ax+ab-b^2=0##
##a^2+2ab+b^2-4ab+4b^2≥0##
##a^2-2ab+b^2+4b^2≥0##,
##(a-b)^2+4b^2≥0##
since, ##(a-b)^2 ≥0## and ##4b^2≥0## is true for any value of ##a,b ∈ℝ## then our proof is complete. Thanks guys Bingo!:cool:
 
  • Like
Likes   Reactions: brotherbobby
There is a simple ‘geometrical’ view which shows the proposition is obviously true. It may be equivalent to what @Office_Shredder said in Post #3.

y = (x-a)(x-b) is an ‘upright’ parabola with real roots (x=a and x=b). So its vertex is always below the x-axis.

Shifting the parabola in the downwards (-y direction) by an amount S (S≥0) gives a new parabola, y = (x-a)(x-b) – S.

This new parabola must also have real roots because the (downwards-shifted, upright) parabola must still intersect the x-axis at two points.

That means (x-a)(x-b) = S always has real roots (provided S≥0).
 
  • Like
Likes   Reactions: chwala

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 27 ·
Replies
27
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K