MHB Show the following sequence as a monotone increasing

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone, Here is the sequence: Let $S\subset\Bbb{R}$ and ${x}_{n}\in S$ and $S\ne\emptyset$ . ${x}_{n-1}<{x}_{n}\le\sup S$ for all $n\ge2$. Prove the sequence is monotone increasing.

I need help proving it; I do not know where to start? Thanks
Carter
 
Last edited:
Physics news on Phys.org
I'm confused: Isn't this already given since $x_{n-1} < x_n$ for all $n \ge 2$, assuming $x_1$ is the first term in the sequence?
 
The assumption is correct where ${x}_{1}$ is given. So I can say the sequence is monotone increasing?
 
Yes. I mean, you are given terms $x_n$ in a set $S$ such that $x_{n-1} < x_n$ for all $n \ge 2$.
That latter inequality is the definition of strict monotonicity, so if the exercise really reads like this, then I cannot see what you would have to do else. (The supremum does not play any role, either.)

Anyone else here on board that sees something I overlooked?
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 17 ·
Replies
17
Views
1K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
6K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
7
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K