MHB Show the Units of Zn with modular multiplication are a group

E01
Messages
8
Reaction score
0
I am trying to do an exercise where I am showing that the set of all elements of $\Bbb{Z}_n$ that are coprime with n form a group under modular addition.

So far I have shown associativity, identity, and closure, but I'm having trouble showing the existence of an inverse. I know I can't use reciprocals and I can't find a way to prove that for $r \in U_n$ there exists some $t \in U_n$ such that $tr$ has a remainder of 1 when divided by n.

Any hints?
 
Physics news on Phys.org
E01 said:
I am trying to do an exercise where I am showing that the set of all elements of $\Bbb{Z}_n$ that are coprime with n form a group under modular addition.

So far I have shown associativity, identity, and closure, but I'm having trouble showing the existence of an inverse. I know I can't use reciprocals and I can't find a way to prove that for $r \in U_n$ there exists some $t \in U_n$ such that $tr$ has a remainder of 1 when divided by n.

Any hints?

Hi E01,

Use the fact that $gcd(r,n) = 1$ if and only if there exist integers $s$ and $t$ such that $rs + nt = 1$.
 
E01 said:
I am trying to do an exercise where I am showing that the set of all elements of $\Bbb{Z}_n$ that are coprime with n form a group under modular addition.

So far I have shown associativity, identity, and closure, but I'm having trouble showing the existence of an inverse. I know I can't use reciprocals and I can't find a way to prove that for $r \in U_n$ there exists some $t \in U_n$ such that $tr$ has a remainder of 1 when divided by n.

Any hints?

Hint #2: take Euge's equation mod $n$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...

Similar threads

Back
Top