MHB Show x³y+y³z+z³x is a constant

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Constant
Click For Summary
For real numbers x, y, z satisfying x+y+z=0 and xy+yz+zx=-3, the expression x³y+y³z+z³x is proven to be a constant. The proof involves substituting z with -x-y, simplifying the expression, and demonstrating that it does not change with different values of x and y. Various algebraic manipulations show that the resulting expression remains invariant under the given conditions. The discussion emphasizes the importance of these constraints in establishing the constancy of the expression. Ultimately, the expression x³y+y³z+z³x holds a fixed value under the specified conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for all real numbers $x,\,y,\,z$ such that $x+y+z=0$ and $xy+yz+zx=-3$, the expression $x^3y+y^3z+z^3x$ is a constant.
 
Mathematics news on Phys.org
anemone said:
Show that for all real numbers $x,\,y,\,z$ such that $x+y+z=0$ and $xy+yz+zx=-3$, the expression $x^3y+y^3z+z^3x$ is a constant.
We have (given)
$x+y+z=0 \cdots(1)$
$xy+yz+zx=-3\cdots(2)$
From (1)
$(x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy +yz + zx) = 0$
or $x^2 + y^2 + z^2 + 2(-3) = 0$
or $x^2 + y^2 + z^2 = 6\cdots(3)$
Further from (1)
$x+y = -z\cdots(4)$
$y+z = -x\cdots(5)$
$z+x = -y\cdots(6)$

Now let us prove that
$x^3y+ y^3 z + z^3 x = xy^3 + yz^3 + zx^3\cdots(7)$

to prove the same
$x^3y+ y^3 z + z^3 x - (xy^3 + yz^3 + zx^3)$
$= (x^3y - xy^3) + (y^3z - yz^3) + (z^3 x - zx^3)$
$= xy(x^2 - y^2) + yz(y^2 - z^2) + zx(z^2 - x^2)$
$=xy(x+y)(x-y) + yz(y+z)( y-z) + zx(z+x)(z-x)$
$=xy(-z)(x-y) + yz(-x) (y-z) + xz(-y) (z-x)$ using (4), (5), (6)
$= - xyz(x-y) - xyz(y-z) - xyz(z-x)$
= 0so (7) is true

Now $(x^2 + y^2 + z^2)(xy + yz + zx) = 6 * (-3) $ putting values from above
Or $x^3y + x^2yz + zx^3 + xy^3 + y^3 z + y^2zx + z^2yx + yz^3 + z^3 x = 18$
or $(x^3y + y^3 z + z^3x) + (xy^3 + yz^3 + zx^3 ) + (x^2yz + xy^2z + xyz^2) = - 18$
or $(x^3y + y^3 z + z^3x) + (x^3y + y^3z + z^3x ) + (x^2yz + xy^2z + xyz^2) = - 18$ (from (7)
or $2(x^3y + y^3 z + z^3x) + xyz(x+y+z) = - 18$
or $2(x^3y + y^3 z + z^3x) + xyz. 0 = - 18$ from (1)
or $2(x^3y + y^3 z + z^3x)= - 18$ from (1)
or $(x^3y + y^3 z + z^3x) = - 9$

Which is a constant

Hence proved
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K