MHB Show x³y+y³z+z³x is a constant

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Constant
AI Thread Summary
For real numbers x, y, z satisfying x+y+z=0 and xy+yz+zx=-3, the expression x³y+y³z+z³x is proven to be a constant. The proof involves substituting z with -x-y, simplifying the expression, and demonstrating that it does not change with different values of x and y. Various algebraic manipulations show that the resulting expression remains invariant under the given conditions. The discussion emphasizes the importance of these constraints in establishing the constancy of the expression. Ultimately, the expression x³y+y³z+z³x holds a fixed value under the specified conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for all real numbers $x,\,y,\,z$ such that $x+y+z=0$ and $xy+yz+zx=-3$, the expression $x^3y+y^3z+z^3x$ is a constant.
 
Mathematics news on Phys.org
anemone said:
Show that for all real numbers $x,\,y,\,z$ such that $x+y+z=0$ and $xy+yz+zx=-3$, the expression $x^3y+y^3z+z^3x$ is a constant.
We have (given)
$x+y+z=0 \cdots(1)$
$xy+yz+zx=-3\cdots(2)$
From (1)
$(x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy +yz + zx) = 0$
or $x^2 + y^2 + z^2 + 2(-3) = 0$
or $x^2 + y^2 + z^2 = 6\cdots(3)$
Further from (1)
$x+y = -z\cdots(4)$
$y+z = -x\cdots(5)$
$z+x = -y\cdots(6)$

Now let us prove that
$x^3y+ y^3 z + z^3 x = xy^3 + yz^3 + zx^3\cdots(7)$

to prove the same
$x^3y+ y^3 z + z^3 x - (xy^3 + yz^3 + zx^3)$
$= (x^3y - xy^3) + (y^3z - yz^3) + (z^3 x - zx^3)$
$= xy(x^2 - y^2) + yz(y^2 - z^2) + zx(z^2 - x^2)$
$=xy(x+y)(x-y) + yz(y+z)( y-z) + zx(z+x)(z-x)$
$=xy(-z)(x-y) + yz(-x) (y-z) + xz(-y) (z-x)$ using (4), (5), (6)
$= - xyz(x-y) - xyz(y-z) - xyz(z-x)$
= 0so (7) is true

Now $(x^2 + y^2 + z^2)(xy + yz + zx) = 6 * (-3) $ putting values from above
Or $x^3y + x^2yz + zx^3 + xy^3 + y^3 z + y^2zx + z^2yx + yz^3 + z^3 x = 18$
or $(x^3y + y^3 z + z^3x) + (xy^3 + yz^3 + zx^3 ) + (x^2yz + xy^2z + xyz^2) = - 18$
or $(x^3y + y^3 z + z^3x) + (x^3y + y^3z + z^3x ) + (x^2yz + xy^2z + xyz^2) = - 18$ (from (7)
or $2(x^3y + y^3 z + z^3x) + xyz(x+y+z) = - 18$
or $2(x^3y + y^3 z + z^3x) + xyz. 0 = - 18$ from (1)
or $2(x^3y + y^3 z + z^3x)= - 18$ from (1)
or $(x^3y + y^3 z + z^3x) = - 9$

Which is a constant

Hence proved
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top