Showing convexity of a discrete function

  • Context: Graduate 
  • Thread starter Thread starter TaPaKaH
  • Start date Start date
  • Tags Tags
    Discrete Function
Click For Summary
SUMMARY

The discussion focuses on proving the convexity of a function defined as g(x) = cf(x) - max{c1(f(x) - f(x-e1)), c2(f(x) - f(x-e2))}, where f is an increasing and convex function defined on the non-negative integers. The participants explore two cases of inequalities involving the coefficients c1 and c2, and their relationships to the convexity condition. The proof strategy involves rearranging terms and leveraging the properties of supermodularity of the function f.

PREREQUISITES
  • Understanding of convex functions and their properties
  • Familiarity with discrete mathematics and functions defined on natural numbers
  • Knowledge of supermodularity and its implications
  • Proficiency in mathematical inequalities and proof techniques
NEXT STEPS
  • Study the properties of convex functions in discrete settings
  • Learn about supermodularity and its applications in optimization
  • Explore techniques for proving inequalities in mathematical analysis
  • Investigate the implications of increasing functions in optimization problems
USEFUL FOR

Mathematicians, researchers in optimization theory, and students studying discrete mathematics who are interested in the properties of convex functions and their applications in various fields.

TaPaKaH
Messages
51
Reaction score
0
Suppose we have a function ##f:\mathbb{N}\times\mathbb{N}\to\mathbb{R}_+## that is
  • increasing: ##f(x+e_i)\geq f(x)## for any ##x\in\mathbb{N}^2## and ##i\in\{1,2\}##;
  • convex: ##f(x+2e_i)-f(x+e_i)\geq f(x+e_i)-f(x)## for any ##x\in\mathbb{N}^2## and ##i\in\{1,2\}##.
How could one show that a function ##g(x):=cf(x)-\max\{c_1\left(f(x)-f(x-e_1)\right),c_2\left(f(x)-f(x-e_2)\right)\}## for ##c=\max\{c_1,c_2\}## (##c_1,c_2\geq0##) is also convex wrt definition above?
 
Physics news on Phys.org
Have you tried substituting g into that convexity inequality?
 
So far I did case-by-case analysis branching on terms, at which maxima for ##f(x+2e_i)##, ##f(x+e_i)## and ##f(x)## are achieved. Six of eight cases went rather smooth, but two cases are giving me problems.

Case 1:
\begin{cases}
c_1\left[f(x)-f(x-e_1)\right]&\geq c_2\left[f(x)-f(x-e_2)\right]\\
c_1\left[f(x+e_1)-f(x)\right]&\geq c_2\left[f(x+e_1)-f(x+e_1-e_2)\right]\\
c_1\left[f(x+2e_1)-f(x+e_1)\right]&\leq c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right],
\end{cases}
in which case
\begin{array}{rl}
g(x)&=c f(x)-c_1\left[f(x)-f(x-e_1)\right]\\
g(x+e_1)&=c f(x+e_1)-c_1\left[f(x+e_1)-f(x)\right]\\
g(x+2e_1)&=c f(x+2e_1)-c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right].
\end{array}
What we want to show is that
\begin{array}{rll}
g(x+2e_1)-2g(x+e_1)+g(x)
&=\begin{matrix}
cf(x+2e_1)-c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right]\\
-2c f(x+e_1)+2c_1\left[f(x+e_1)-f(x)\right]\\
+cf(x)-c_1\left[f(x)-f(x-e_1)\right]
\end{matrix}
&\geq0
\end{array}
Case 2:
\begin{cases}
c_1\left[f(x)-f(x-e_1)\right]&\geq c_2\left[f(x)-f(x-e_2)\right]\\
c_1\left[f(x+e_1)-f(x)\right]&\leq c_2\left[f(x+e_1)-f(x+e_1-e_2)\right]\\
c_1\left[f(x+2e_1)-f(x+e_1)\right]&\leq c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right],
\end{cases}
in which case
\begin{array}{rl}
g(x)&=c f(x)-c_1\left[f(x)-f(x-e_1)\right]\\
g(x+e_1)&=c f(x+e_1)-c_2\left[f(x+e_1)-f(x+e_1-e_2)\right]\\
g(x+2e_1)&=c f(x+2e_1)-c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right].
\end{array}
What we want to show is that
\begin{array}{rll}
g(x+2e_1)-2g(x+e_1)+g(x)
&=\begin{matrix}
cf(x+2e_1)-c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right]\\
-2c f(x+e_1)+2c_2\left[f(x+e_1)-f(x+e_1-e_2)\right]\\
+cf(x)-c_1\left[f(x)-f(x-e_1)\right]
\end{matrix}
&\geq0
\end{array}
I guess the proof lies in rearranging the terms in a smart way and then applying the assumptions and properties. One can also use that ##f## is also supermodular, that is ##f(x+e_1+e_2)+f(x)\geq f(x+e_1)+f(x+e_2)## for any ##x\in\mathbb{N}^2##.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K