Understanding Theorem 13 from Calculus 7th ed, R. Adams, C. Essex, 4.10

  • #1
mcastillo356
Gold Member
487
213
TL;DR Summary
I'm sweating to understand it. There is a reasoning, under an assumption, that it will happen to be contradictory that some polynomial is not identically zero. The algebra is difficult to me.
The following properties of big-O notation follow from the definition:

(i) if ##f(x)=O(u(x))## as ##x\rightarrow{a}##, then ##Cf(x)=O(u(x))## as ##x\rightarrow{a}## for any value of the constant ##C##.
(ii) If ##f(x)=O(u(x))## as ##x\rightarrow{a}## and ##g(x)=O(u(x))## as ##x\rightarrow{a}##, then ##f(x)\pm{g(x)}=O(u(x))## as ##x\rightarrow{a}##.
(iii) If ##f(x)=O((x-a)^{k}u(x))## as ##x\rightarrow{a}##, then ##f(x)/(x-a)^{k}=O(u(x))## as ##x\rightarrow{a}## for any constant ##k##.

Taylor's Theorem says that if ##f^{(n+1)}(t)## exists on an interval containing ##a## and ##x##, and ##P_n## is the ##n##th-order Taylor polynomial for ##f## at ##a##, then, as ##x\rightarrow{a}##

$$f(x)=P_{n}(x)+O\Big((x-a)^{n+1}\Big)$$

This is a statement about how rapidly the graph of the Taylor polynomial ##P_{n}(x)## approaches that of ##f(x)## as ##x\rightarrow{a}##; the vertical distance between the graph decreases as fast as ##|x-a|^{n+1}##. The following theorem shows that the Taylor polynomial ##P_{n}(x)## is the only polynomial of degree at most ##n## whose graph approximates the graph of ##f(x)## that rapidly

Theorem 13

If ##f(x)=Q_{n}(x)+O((x−a)n+1)## as ##x→a## where ##Q_n## is a polynomial of degree at most ##n##, then ##Q_{n}(x)=P_{n}(x)##, that is, ##Q_n## is the Taylor polynomial for ##f(x)## at ##x=a##.

PROOF

Let ##P_n## be the Taylor polynomial, then properties (i) and (ii) of Big-O imply that $$R_{n}(x)=Q_{n}(x)−P_{n}(x)=O((x−a)^{(n+1})$$
We want to show that ##R_{n}(x)## is identically zero so that ##Q_n(x)=P_n(x)## for all ##x##. By replacing ##x## with ##a+(x-a)## and expanding powers, we can write ##R_n(x)## in the form $$R_{n}(x)=c_0+c_1(x-a)+c_2(x-a)^2+\ldots+c_n(x-a)^n$$. If ##R_n(x)## is not identically zero, then there is a smalest coefficient ##c_k (k\leq n)##, such that ##c_k\neq 0##, but ##c_j=0## for ##0\leq j\leq {k-1}##, so ##c_k(x-a)^k+c_{k+1}(x-a)^{k+1}+\ldots +c_n(x-a)^{n-k}##. Therefore ##\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)=c_k\neq 0##. However, by property (iii) above we have ##R_{n}(x)/(x-a)^k=O((x-a)^{n+1-k})##. Since ##n+1-k>0##, this says ##R_{n}(x)/(x-a)^{k}\rightarrow{0}## as ##x\rightarrow{a}##. This contradiction shows that ##R_{n}(x)## must be identically zero. Therefore ##Q_{n}(x)=P_{n}(x)## for all ##x##.

The real question is if should I face this theorem naively, or seriosly; if I take it easy, I understand it. If I get obstinate, and want to check right the theorem, then there is a section for which I only got a mess:

How emerges ##R_{n}(x)=(x-a)^k(c_k+c_{k+1}(x-a)+\ldots{+c_n(x-a)^{n-k}})\Rightarrow{R_{n}(x)=(x-a)^k c_k+c_{k+1}(x-a)^{k+1}+\ldots+ c_n(x-a)^n}##?

Because if there is a minimum ##c_k\neq 0(k\leq n)##; this coefficient will be zero if ##0\leq j\leq {k-1}##, this is, in the closed interval ##[0,k-1]##, ##R_{n}(x)=(x-a)^k c_k+c_{k+1}(x-a)^{k+1}+\ldots+ c_n(x-a)^n##. Just factorize
 

Answers and Replies

  • #2
hutchphd
Science Advisor
Homework Helper
2022 Award
5,539
4,721
TL;DR Summary: I'm sweating to understand it. There is a reasoning, under an assumption, that it will happen to be contradictory that some polynomial is not identically zero. The algebra is difficult to me.

The following properties of big-O notation follow from the definition:

(i) if ##f(x)=O(u(x))## as ##x\rightarrow{a}##, then ##Cf(x)=O(u(x))## as ##x\rightarrow{a}## for any value of the constant ##C##.
(ii) If ##f(x)=O(u(x))## as ##x\rightarrow{a}## and ##g(x)=O(u(x))## as ##x\rightarrow{a}##, then ##f(x)\pm{g(x)}=O(u(x))## as ##x\rightarrow{a}##.
(iii) If ##f(x)=O((x-a)^{k}u(x))## as ##x\rightarrow{a}##, then ##f(x)/(x-a)^{k}=O(u(x))## as ##x\rightarrow{a}## for any constant ##k##.

Taylor's Theorem says that if ##f^{(n+1)}(t)## exists on an interval containing ##a## and ##x##, and ##P_n## is the ##n##th-order Taylor polynomial for ##f## at ##a##, then, as ##x\rightarrow{a}##

$$f(x)=P_{n}(x)+O\Big((x-a)^{n+1}\Big)$$

This is a statement about how rapidly the graph of the Taylor polynomial ##P_{n}(x)## approaches that of ##f(x)## as ##x\rightarrow{a}##; the vertical distance between the graph decreases as fast as ##|x-a|^{n+1}##. The following theorem shows that the Taylor polynomial ##P_{n}(x)## is the only polynomial of degree at most ##n## whose graph approximates the graph of ##f(x)## that rapidly

Theorem 13

If ##f(x)=Q_{n}(x)+O((x−a)n+1)## as ##x→a## where ##Q_n## is a polynomial of degree at most ##n##, then ##Q_{n}(x)=P_{n}(x)##, that is, ##Q_n## is the Taylor polynomial for ##f(x)## at ##x=a##.

PROOF

Let ##P_n## be the Taylor polynomial, then properties (i) and (ii) of Big-O imply that $$R_{n}(x)=Q_{n}(x)−P_{n}(x)=O((x−a)^{(n+1})$$
We want to show that ##R_{n}(x)## is identically zero so that ##Q_n(x)=P_n(x)## for all ##x##. By replacing ##x## with ##a+(x-a)## and expanding powers, we can write ##R_n(x)## in the form $$R_{n}(x)=c_0+c_1(x-a)+c_2(x-a)^2+\ldots+c_n(x-a)^n$$. If ##R_n(x)## is not identically zero, then there is a smalest coefficient ##c_k (k\leq n)##, such that ##c_k\neq 0##, but ##c_j=0## for ##0\leq j\leq {k-1}##, so ##c_k(x-a)^k+c_{k+1}(x-a)^{k+1}+\ldots +c_n(x-a)^{n-k}##. Therefore ##\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)=c_k\neq 0##. However, by property (iii) above we have ##R_{n}(x)/(x-a)^k=O((x-a)^{n+1-k})##. Since ##n+1-k>0##, this says ##R_{n}(x)/(x-a)^{k}\rightarrow{0}## as ##x\rightarrow{a}##. This contradiction shows that ##R_{n}(x)## must be identically zero. Therefore ##Q_{n}(x)=P_{n}(x)## for all ##x##.

The real question is if should I face this theorem naively, or seriosly; if I take it easy, I understand it. If I get obstinate, and want to check right the theorem, then there is a section for which I only got a mess:

How emerges ##R_{n}(x)=(x-a)^k(c_k+c_{k+1}(x-a)+\ldots{+c_n(x-a)^{n-k}})\Rightarrow{R_{n}(x)=(x-a)^k c_k+c_{k+1}(x-a)^{k+1}+\ldots+ c_n(x-a)^n}##?

Because if there is a minimum ##c_k\neq 0(k\leq n)##; this coefficient will be zero if ##0\leq j\leq {k-1}##, this is, in the closed interval ##[0,k-1]##, ##R_{n}(x)=(x-a)^k c_k+c_{k+1}(x-a)^{k+1}+\ldots+ c_n(x-a)^n##. Just factorize
I believe ##\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)=c_k\neq 0## should be $$\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)^k=c_k\neq 0$$ and then the rest seems absolutely straightforward to me (and I am easily confused). Does that help?
 
  • Haha
  • Informative
Likes jedishrfu and mcastillo356
  • #3
mcastillo356
Gold Member
487
213
I believe ##\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)=c_k\neq 0## should be $$\lim_{x\rightarrow{a}}R_{n}(x)/(x-a)^k=c_k\neq 0$$

Yes.

and then the rest seems absolutely straightforward to me (and I am easily confused). Does that help?
Let ##n=3##
##R_{3}(x)=c_0+c_1(x-a)+c_2(x-a)^2+c_3(x-a)^3##, if isn't identically zero, some ##c_i\neq0##. If the smallest non-zero coefficient happens to be zero, ##c_0\neq 0##, there cannot be factorization
 
  • #4
hutchphd
Science Advisor
Homework Helper
2022 Award
5,539
4,721
$$(x-a)^0=1$$. Where does this fail?
 
  • Love
Likes mcastillo356
  • #5
mcastillo356
Gold Member
487
213
HI, @hutchphd, PF

$$(x-a)^0=1$$. Where does this fail?

It doesn't fail. Your post is been the kick I needed. P&L.

Marcos Castillo

PD: ##c_j\neq 0## for ##0\leq j\leq {k-1}##. How do I harmonize what I perceive as a cognitive dissonance?
 
  • #6
mcastillo356
Gold Member
487
213
Solved. If ##c_j\neq 0## for ##0\leq j\leq{k-1}##, the textbook is very concrete: "If ##R_{n}(x)## is not identically zero, then there is a smalest coefficient ##c_k(k\leq n)## such that ##c_k##...". If ##k\leq n##, ##0\leq\ldots k-3\leq k-2\leq k-1\leq k\leq n##. Therefore ##c_j## changes to ##c_k##
Solved?
 
Last edited:
  • #7
mcastillo356
Gold Member
487
213
"The real importance of Theorem 13 is that it enables us to obtain Taylor polynomials for new functions by combining others already known: as long as the error term - Of those known?- is of higher degree than the order of the polynomial obtained, the polynomial must be the Taylor polynomial."

Example Find the Maclaurin polynomial of order ##2n## for ##\cosh x=\dfrac{e^{x}+e^{-x}}{2}##

The error term of ##e^{-x}## is of lower degree (##O(x^{2n-2})##) than the one of the Maclaurin polynomial ##P_{2n}(x)## for ##\cosh x##: ##O(x^{2n+2})##

There seems to be a contradiction
 
  • #8
hutchphd
Science Advisor
Homework Helper
2022 Award
5,539
4,721
Why must they be equal? Qn is a polynomial of degree at most n.
 
  • Informative
Likes mcastillo356
  • #9
mcastillo356
Gold Member
487
213
$$f(x)=Q_{n}(x)+O((x-a)^{n+1})\underrightarrow{_{n\rightarrow{2n+1}}}f(x)=Q_{2n+1}(x)+O((x-a)^{2n+2})



\Rightarrow{e^x=Q_{2n+1}(x)+O((x-a)^{2n+2})}



\Rightarrow{e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+ \ldots+\dfrac{x^{2n}}{(2n)!}+\dfrac{x^{2n+1}}{(2n+1)!}+ O(x^{2n+2})}$$

$$\Leftrightarrow$$

$$f(x)=P_{n}(x)+O((x-a)^{n+1})\underrightarrow{_{n\rightarrow{2n+1}}}f(x)=P_{2n+1}(x)+O((x-a)^{2n+2})



\Rightarrow{e^x=P_{2n+1}(x)+O((x-a)^{2n+2})}



\Rightarrow{e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+ \ldots+\dfrac{x^{2n}}{(2n)!}+\dfrac{x^{2n+1}}{(2n+1)!}+ O(x^{2n+2})}$$

Am I well on the track? Does it observe Theorem 13 and why?
 
  • #10
mcastillo356
Gold Member
487
213
Hi, PF, I think I'm on the track
Why must they be equal? Qn is a polynomial of degree at most n.

This is the key: ##Q_n## is at most a polynomial of degree ##n##. The case where obtains the ##2n##-th degree polynomial for ##\cosh x## is a based on a simple substitution, ##n\rightarrow{2n+1}##. No violation of Theorem 13 of the textbook. Carefull and good sense's observance instead.

The real importance of Theorem 13 is that inables us to obtain Taylor polynomials for new functions by combining others already known; as the error term is of higher degree than the order of the polynomial obtained, the polynomial must be the Taylor polynomial.

The sentence in bold typing of the above quote is, in my dilettante opinion, of poor interest. I've tried to find the ephitet to describe it, but no word fits perfectly; redundant, futile, irrelevant, recurrent, resonant; once experienced Taylor's Theorem.

Hope this post written on my own is valid
 
  • #11
mcastillo356
Gold Member
487
213
The sentence in bold typing of the above quote is, in my dilettante opinion, of poor interest. I've tried to find the ephitet to describe it, but no word fits perfectly; redundant, futile, irrelevant, recurrent, resonant; once experienced Taylor's Theorem.

Hi, PF,Theorem13 has nothing to see with Taylor's Theorem. It's just algebra.

P&L, Marcos
 

Suggested for: Understanding Theorem 13 from Calculus 7th ed, R. Adams, C. Essex, 4.10

  • Last Post
Replies
12
Views
735
Replies
2
Views
576
Replies
7
Views
766
  • Last Post
Replies
26
Views
1K
Replies
11
Views
1K
Replies
1
Views
707
  • Last Post
Replies
9
Views
1K
  • Last Post
Replies
3
Views
523
Top