Showing that a function is surjective onto a set

Click For Summary
SUMMARY

This discussion focuses on demonstrating that the function \( f \) is surjective onto the set \( B(0,0.4) \). The user needs to show that for every \( z \in B(0,0.4) \), there exists an \( x \in B(0,1) \) such that \( f(x) = z \). Key insights include utilizing the reverse triangle inequality and the properties of the punctured closed ball \( B^\ast(0,\frac{4}{10}) \). The discussion emphasizes the importance of establishing the relationship between points in these sets and leveraging the fixed point \( x=0 \) to facilitate the proof.

PREREQUISITES
  • Understanding of surjective functions and their definitions.
  • Familiarity with the concept of closed balls in metric spaces, specifically \( B(0,r) \) and \( B^\ast(0,r) \).
  • Knowledge of the reverse triangle inequality and its implications in analysis.
  • Basic proficiency in mathematical notation and functions in real analysis.
NEXT STEPS
  • Study the properties of surjective functions in real analysis.
  • Learn about the reverse triangle inequality and its applications in proofs.
  • Explore the concept of punctured closed balls and their significance in topology.
  • Investigate fixed point theorems and their relevance to function behavior in metric spaces.
USEFUL FOR

Mathematics students, particularly those studying real analysis, as well as educators and researchers interested in function properties and surjectivity in metric spaces.

mathstudent34
Messages
1
Reaction score
0
Homework Statement
Let $B(0,1)\subseteq\mathbb{R^n}$ be the ball of radius $1$ in $\mathbb{R^n}$. Suppose $f:B(0,1)\to\mathbb{R^n}$ satisfies $f(0)=0$ and
$$\forall x\neq y\in B(0,1),~~~|f(x)-f(y)-(x-y)|\leq 0.1|x-y|.$$
Show that $f$ is onto $B(0,0.4)$.
Relevant Equations
$f:X\to Y$ is surjective if $\forall y\in Y,\ \exists x\in X$ such that $f(x)=y$.
I have to show that $\forall z\in B(0,0.4)$, there exists an $x\in B(0,1)$ such that $f(x)=z$ but I am not sure how to show this. From the reverse triangle inequality
$$-|f(x)-f(y)|+|x-y|\leq 0.1|x-y|\implies |f(x)-f(y)|\geq 0.9|x-y|$$
im not sure if this helps.
 
Physics news on Phys.org
Just an idea: maybe it helps that ##|f(z)-z|\leq 0.04##.
 
I assume (since you are not precisely specifying it) that ##B(0,r)\subseteq\mathbb{R}^n## is the closed ball of radius ##r>0## centered at ##0##.

You are given that ##0\in B(0,1)## is a fixed point of ##f##. This immediately tells us that there exist a point in ##x\in B(0,1)## for which ##f(x) = 0##, namely the point ##x=0##. Thus, the problems is now to show that there for every point ##z\in B^\ast(0,\tfrac{4}{10})## exist at least one point ##x\in B(0,1)## s.t. ##f(x)=z##, where ##B^\ast(0,r) = B(0,r)\setminus\{0\}## denotes the punctured closed ball.

Now, note that
$$\forall x\in B^\ast(0,\tfrac{4}{10})\ :\ \vert f(x) - x\vert \leq \frac{1}{10}\vert x\vert.$$
is a special case of your original inequality satisfied by ##f## (Hint, tak ##y=0## and use that ##B^\ast(0,\tfrac{4}{10})\subset B^\ast(0,1)##).

Try to proceed from here (Hint, what it the farthest two points in ##B^\ast(0,\tfrac{4}{10})## can be from each other?).
 
Did you read online what you wrote? As you got part right not too difficult to get the rest. (Though I don't know why a bit came out red.)

Show that ##f## is onto ##B(0,0.4)##.
Relevant Equations:: ##f:X\to Y## is surjective if ##\forall y\in Y,\ \exists x\X## such that ##f(x)=y##.

I have to show that ##\forall z\in B(0,0.4)##, there exists an ##x\in B(0,1)## such that ##f(x)=z## but I am not sure how to show this. From the reverse triangle inequality
$$-|f(x)-f(y)|+|x-y|\leq 0.1|x-y|\implies |f(x)-f(y)|\geq 0.9|x-y|$$
im not sure if this helps.
 

Similar threads

Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
20
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K