Undergrad Showing that inverse of an isomorphism is an isomorphism

Click For Summary
SUMMARY

The discussion centers on proving that the inverse of an isomorphism, denoted as ##\phi^{-1} : H \to G##, is also an isomorphism when ##\phi : G \to H## is an isomorphism. It is established that ##\phi^{-1}## is a bijection due to ##\phi## being its inverse. The proof leverages the surjectivity of ##\phi## to demonstrate that ##\phi^{-1}## maintains the homomorphic property, specifically showing that ##\phi^{-1}(ab) = \phi^{-1}(a) \phi^{-1}(b)## for all ##a, b \in H##. The necessity of injectivity is clarified, indicating that it is implicitly used in the proof to justify the equality of elements in ##G##.

PREREQUISITES
  • Understanding of group theory concepts, specifically isomorphisms.
  • Familiarity with the definitions of injective and surjective functions.
  • Knowledge of homomorphisms and their properties in algebra.
  • Basic understanding of function inverses in mathematics.
NEXT STEPS
  • Study the properties of group isomorphisms in detail.
  • Learn about the implications of injectivity and surjectivity in function theory.
  • Explore examples of homomorphisms and their applications in abstract algebra.
  • Investigate the equivalence of different definitions of injectivity and surjectivity.
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in the properties of group theory and isomorphisms will benefit from this discussion.

Mr Davis 97
Messages
1,461
Reaction score
44
Let ##G## and ##H## be groups, and let ##\phi : G \to H## be an isomorphism. I want to show that ##\phi^{-1} : H \to G## is also an isomorphism. First, note that ##\phi^{-1}## is clearly a bijection as ##\phi## is its inverse. Second, let ##a,b \in H##. Since ##\phi## is surjective, there exist ##x,y \in G## s.t ##a = \phi(x)## and ##b = \phi(y)##. Then ##\phi^{-1}(ab) = \phi^{-1}(\phi(x) \phi(y)) = \phi^{-1}(\phi(xy)) = xy = \phi^{-1} (\phi (x)) \phi^{-1} (\phi(y)) = \phi^{-1}(a) \phi^{-1}(b)##.

Here is my question, why did I only have to use the fact that ##\phi## is surjective and a homomorphism in showing that ##\phi^{-1}## is a homomorphism? Why didn't I have to use that it is injective?
 
Physics news on Phys.org
Mr Davis 97 said:
Let ##G## and ##H## be groups, and let ##\phi : G \to H## be an isomorphism. I want to show that ##\phi^{-1} : H \to G## is also an isomorphism. First, note that ##\phi^{-1}## is clearly a bijection as ##\phi## is its inverse. Second, let ##a,b \in H##. Since ##\phi## is surjective, there exist ##x,y \in G## s.t ##a = \phi(x)## and ##b = \phi(y)##. Then ##\phi^{-1}(ab) = \phi^{-1}(\phi(x) \phi(y)) = \phi^{-1}(\phi(xy)) \stackrel{(*)}{=} xy \stackrel{(*)}{=} \phi^{-1} (\phi (x)) \phi^{-1} (\phi(y)) = \phi^{-1}(a) \phi^{-1}(b)##.

Here is my question, why did I only have to use the fact that ##\phi## is surjective and a homomorphism in showing that ##\phi^{-1}## is a homomorphism? Why didn't I have to use that it is injective?
You did use it. Let's assume ##\phi ## is only surjective and we have ##\phi(u)=\phi(v)##. Then how could we justify ##u=\phi^{-1}(\phi(u))=\phi^{-1}(\phi(v))=v## which you used at the equations I marked with ##(*)\,?## So we actually used ##\phi(u)=\phi(v) \Longrightarrow u=v## which is precisely injectivity.
 
  • Like
Likes Mr Davis 97
One can define injectivity and surjectivity only by means of morphisms. Let's take the example above: ##\phi\, : \,G \longrightarrow H##.

Then ##\phi ## is injective, if and only if for any functions ##\varphi , \psi \, : \, K \longrightarrow G## from a set ##K## with ##\phi \varphi = \phi \psi## follows ##\varphi = \psi \,.##

And ##\phi ## is surjective, if and only if for any functions ##\varphi , \psi \, : \, H \longrightarrow L## to a set ##L## with ##\varphi \phi = \psi \phi## follows ##\varphi = \psi \,.##

If you like you can show the equivalence of these definitions to the usual ones as an exercise. So injectivity is left cancellation and surjectivity right cancellation. For an isomorphisms we need, resp. have both. That's why I said in an earlier thread, that both directions are needed: ##\phi \phi^{-1} = \operatorname{id}_H## and ##\phi^{-1} \phi = \operatorname{id}_G##.
 
  • Like
Likes Mr Davis 97
You can't talk about inverse functions if the function is not injective...
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 26 ·
Replies
26
Views
888
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
972
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K