MHB Showing that nth root of c_n is equal to nth root of c_n+1 in the limit

  • Thread starter Thread starter OhMyMarkov
  • Start date Start date
  • Tags Tags
    Limit Root
OhMyMarkov
Messages
81
Reaction score
0
Hello everyone!

I'm trying to show that $\lim \sup \sqrt[n]{c_{n+1}}=\lim \sup \sqrt[n]{c_n}$

This is my attempt:
$\lim \sup \sqrt[n]{c_{n+1}} = \lim \sup \sqrt[m-1]{c_m}=\lim \sup c_m \; ^{\frac{1}{m}}c_m \; ^{\frac{1}{m(m-1)}}$

I'm stuck here, I think I must use some exponential property that says that something decays faster than something or the ratio of two things is zero in the limit...

Any help is appreciated!
 
Last edited:
Physics news on Phys.org
OhMyMarkov said:
I'm trying to show that $\lim \sup \sqrt[n]{c_{n+1}}=\lim \sup \sqrt[n]{c_n}{n}$
What if $c_n=1$ for all $n$?
 
Ah excuse me LaTeX typo: I meant

I'm trying to show that: $\lim \sup \sqrt[n]{c_{n+1}} = \lim \sup \sqrt[n]{c_{n}}$

I fixed it in the thread
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top