Showing that S is unbounded by contradiction

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Contradiction
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Homework Statement
Let ##S## be a subset of ##\mathbb{R}^2## with the standard metric. Show that if there exists a sequence ##(x_n, y_n)## in ##S## s.t. ##|(x_n,y_n)|\ge n## for all ##n \ge 1##, then ##S## is unbounded
Relevant Equations
A set ##S## is bounded if there is a closed ball B(r,p)=\{(x,y)\in \mathbb{R}^2: |(x,y)-p|\le R}\ such that ##B(r,p)## is a subset of ##S##.
Dear Everyone,

I am attempting a proof of contradiction for this problem. I am stuck on next step.

My attempt:
Assume that ##S## is bounded. Choose a ##N=\text{greatest integer function of} R+1##...

Here is where I am stuck. I want to show that the sequence is moving away from the closed ball as N is getting larger.

Thanks,
Cbarker1
 
Last edited:
Physics news on Phys.org
Start with the definition. What does '##S## is bounded' mean?
 
A set S is bounded if there is a closed ball B(r,p)=\{(x,y)\in \mathbb{R}^2: |(x,y)-p|\le R}\ such that B(r,p) is a subset of S. Based by the assumption, I am "given a R" but i can't know the "R".
 
O.k., so we have: ##S## bounded ##\Longleftrightarrow (\exists \,p\in S)\, (\exists \,R>0)\, : \,S\subseteq B(p,R)##

We want to show that ##S## in unbounded, which means: ##(\forall \,p\in S) \,(\forall R>0)\, : \,S\nsubseteq B(R,p).## Now we choose any ##p\in S## and any ##R>0## and we will have to find a point ##q\in S## with ##q\not\in B(p,R)##.

Finally translate ##q\not\in B(p,R)## and think about what that point ##q## could be.
 
I am confused...are we still using proof by contradiction?
 
  • Like
Likes PeroK
cbarker1 said:
I am confused...are we still using proof by contradiction?
No. We prove the statement directly. I have only derived what unbounded means, i.e. not bounded with the definition you gave for boundedness.

You can write it as an indirect proof, but there is no need to.
 
I suggest that the triangle inequality is your friend in this case.
 
cbarker1 said:
A set S is bounded if there is a closed ball B(r,p)=\{(x,y)\in \mathbb{R}^2: |(x,y)-p|\le R}\ such that B(r,p) is a subset of S. Based by the assumption, I am "given a R" but i can't know the "R".
It's the other way round. If ##S## is bounded, then ##S## is a subset of some closed ball.
 
I talked to my professor about this question. He recommended me to do proof by contradiction on this question. I need to practice this method. It is good practice for me to do so. I know that the sequence needs move away from the closed ball...
 
  • #10
If S is bounded, then there exists R > 0 such that n \leq \|(x_n,y_n)\| \leq R for every n \geq 1. Is that possible?
 
  • #11
no. I think that your condition is not possible I can pick a N bigger than R...
 
Back
Top