Showing that this identity involving the Gamma function is true

Click For Summary
SUMMARY

This discussion focuses on verifying an identity involving the Gamma function within the context of quantum field theory. The integral representation is derived from the general result for dimensional regularization, specifically for the case where D=4 and n=1. The conclusion indicates that while the general form of the equation is correct, discrepancies arise in the prefactors and the introduction of the renormalization scale μ, which remains undefined in the provided context.

PREREQUISITES
  • Understanding of dimensional regularization in quantum field theory
  • Familiarity with the Gamma function and its properties
  • Knowledge of renormalization techniques and scales in particle physics
  • Proficiency in manipulating integrals in the context of quantum mechanics
NEXT STEPS
  • Study the derivation of the Gamma function in quantum field theory contexts
  • Learn about the role of renormalization scales, specifically μ, in quantum field theories
  • Explore dimensional regularization techniques and their applications in particle physics
  • Investigate the implications of prefactors in quantum field theory calculations
USEFUL FOR

Researchers and students in theoretical physics, particularly those focusing on quantum field theory, dimensional regularization, and the mathematical foundations of particle physics.

Markus Kahn
Messages
110
Reaction score
14
Homework Statement
Show that
$$ -\frac{\lambda^4}{M^4}U_S \int\frac{d^4k}{(2\pi)^4} \frac{1}{k^2-\sigma^2} =-4 \frac{i \lambda^{4}}{(4 \pi)^{2}} \frac{\sigma^{2}}{M^{4}} U_{S}\left[3 \frac{1}{\bar{\epsilon}}+3 \log \left(\frac{\mu^{2}}{\sigma^{2}}\right)+1\right]+\ldots, $$
where ##\frac{1}{\bar\epsilon} = \frac{1}{\epsilon}-\gamma_{EM}+\ln(4\pi)##, ##U_S## is just a scalar number, ##D=4-2\epsilon## and ##\mu## is the renormalization scale.
Relevant Equations
$$\Gamma(1-\frac{D}{2}) = \Gamma(-1+\epsilon) = -\frac{1}{\epsilon}-1+\gamma_{EM}+\mathcal{O}(\epsilon).$$
My attempt at this:
From the general result
$$\int \frac{d^Dl}{(2\pi)^D} \frac{1}{(l^2+m^2)^n} = \frac{im^{D-2n}}{(4\pi)^{D/2}} \frac{\Gamma(n-D/2)}{\Gamma(n)},$$
we get by setting ##D=4##, ##n=1##, ##m^2=-\sigma^2##
$$-\frac{\lambda^4}{M^4}U_S \int\frac{d^4k}{(2\pi)^4} \frac{1}{k^2-\sigma^2} =
\frac{i\lambda^4}{M^4}U_S\frac{1}{(4\pi)^{D/2}} \frac{\Gamma(1-D/2)}{\Gamma(1)} (\sigma^2)^{D/2-1}.
$$
We further have
$$\frac{1}{(4\pi)^{D/2}}(\sigma^{2})^{D/2-1}=\frac{1}{(4\pi)^{2-\epsilon}}(\sigma^{2})^{1-\epsilon}= \frac{\sigma^2}{(4\pi)^{2}}\left(\frac{4\pi}{\sigma^{2}}\right)^{\epsilon} = \frac{\sigma^2}{(4\pi)^{2}}e^{\epsilon \ln(4\pi/\sigma^2)}\approx \frac{\sigma^2}{(4\pi)^{2}}\left(1+\epsilon \ln(4\pi/\sigma^2)\right) $$

We are left with
$$ \frac{\Gamma(1-D/2)}{\Gamma(1)} = {\Gamma(1-D/2)} = -\frac{1}{\epsilon}-1+\gamma_{EM}+\mathcal{O}(\epsilon).$$

Put everything together:
$$
\begin{align*}
\frac{i\lambda^4}{M^4}U_S\frac{1}{(4\pi)^{D/2}} \frac{\Gamma(1-D/2)}{\Gamma(1)} (\sigma^2)^{D/2-1}
&=\frac{i\lambda^4}{M^4}U_S \frac{\sigma^2}{(4\pi)^{2}}\left(1+\epsilon \ln(4\pi/\sigma^2)\right) \left(-\frac{1}{\epsilon}-1+\gamma_{EM}+\mathcal{O}(\epsilon)\right)\\
&= \frac{i\lambda^4}{(4\pi)^{2}}U_S \frac{\sigma^2}{M^4}\left(1+\epsilon \ln(4\pi/\sigma^2)\right) \left(-\frac{1}{\epsilon}-1+\gamma_{EM}+\mathcal{O}(\epsilon)\right)\\
&= -\frac{i\lambda^4}{(4\pi)^{2}}U_S \frac{\sigma^2}{M^4}\left(-\gamma_{EM} +\log \left(\frac{4 \pi}{\sigma ^2}\right)+\frac{1}{\epsilon }+1\right) + \mathcal{O}(\epsilon)\\
&= -\frac{i\lambda^4}{(4\pi)^{2}}U_S \frac{\sigma^2}{M^4}\left(\frac{1}{\epsilon }-\gamma_{EM} +\log ({4 \pi}) -\log({\sigma ^2})+1\right) + \mathcal{O}(\epsilon)\\
&= -\frac{i\lambda^4}{(4\pi)^{2}}U_S \frac{\sigma^2}{M^4}\left[\frac{1}{\bar\epsilon }+\log\left(\frac{1}{\sigma ^2}\right)+1\right] + \mathcal{O}(\epsilon)\\
&\neq -4 \frac{i \lambda^{4}}{(4 \pi)^{2}}U_{S} \frac{\sigma^{2}}{M^{4}} \left[3 \frac{1}{\bar{\epsilon}}+3 \log \left(\frac{\mu^{2}}{\sigma^{2}}\right)+1\right]+\ldots.
\end{align*}
$$

Conclusion:

The general form seems to be right, but the details are wrong... I don't see where the prefactors of ##4## and ##3## are supposed to come from, nor do I see where the renormalization scale ##\mu## comes into play...
 
Physics news on Phys.org
I observe if renormalization factor does not exist in numerator
\log( 1/\sigma^2)
is ambiguous in its physical dimension. I assume dimension of ##\mu## and ##\sigma## is same. How is ##\mu## introduced in your text ? What is its definition ?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
725
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
3K