Sigma Multiplied Gaussian Distribution

Click For Summary
SUMMARY

The discussion centers on calculating the probabilities of independent Gaussian distributions landing within specified sigma ranges. For two independent variables, the probability of both being within 3 sigma is 0.9948, derived from the equation (0.9974 * 0.9974). For combinations of different sigma values, the probabilities are 0.9109 for two variables within 2 sigma and 0.9922 for three variables within 3 sigma. The concept of a "sigma multiplier" requires further clarification, as its impact on values is not straightforward.

PREREQUISITES
  • Understanding of Gaussian distributions
  • Knowledge of probability theory
  • Familiarity with statistical concepts such as sigma levels
  • Ability to use online probability calculators
NEXT STEPS
  • Research the use of online calculators for Gaussian probabilities
  • Study the mathematical derivation of probabilities for independent Gaussian variables
  • Explore the implications of sigma multipliers in statistical analysis
  • Learn about the Central Limit Theorem and its relation to Gaussian distributions
USEFUL FOR

Statisticians, data analysts, and anyone involved in probability calculations related to Gaussian distributions.

jaydnul
Messages
558
Reaction score
15
Hi!

Say i have two variables that have independent gaussian distributions of probability of being a certain value when i sample them, what is the likely hood that both will land on a 3 sigma value simultaneously? Is there an equation that easily determines that? Also for other combinations like one at 2 sigma and the other at 3 sigma, or what if i have 3 variables instead of two, etc.

Side question, if i had applied a sigma multiplier of 2x, how does that affect the values?

Thanks!
 
Physics news on Phys.org
Prob. of a specific value is 0. Rephrase question - use ranges.
 
jaydnul said:
Hi!

Say i have two variables that have independent gaussian distributions of probability of being a certain value when i sample them, what is the likely hood that both will land on a 3 sigma value simultaneously?
I will assume that you mean within 3 sigma from the mean.
The probability of a result being within 3 sigma is 0.9974. The probability of two independent, identically distributed results being within 3 sigma is 0.9974 * 0.9974 = 0.9948
jaydnul said:
Is there an equation that easily determines that?
The equation for a result being within a certain sigma from the mean is complicated but there are online calculators and tables that you can use. Here is one. It gives you the probability of a result being between 0 and Z, so you would want to double that to include results between -Z and 0. Once you have a probability, ##p##, from the online link and want to use it for ##n## Independent, Identically Distributed (IID) results, the formula is ##(2 p)^n##.
jaydnul said:
Also for other combinations like one at 2 sigma and the other at 3 sigma, or what if i have 3 variables instead of two, etc.
The probability of a result being within 2 sigma is 0.9544. The probability of two independent, identically distributed results being within 2 sigma is 0.9544 * 0.9544 = 0.9109

The probability of three results within 3 sigma is 0.9974 * 0.9974 * 0.9974 = 0.9922
The probability of three results within 2 sigma is 0.9544* 0.9544* 0.9544= 0.8693

jaydnul said:
Side question, if i had applied a sigma multiplier of 2x, how does that affect the values?
It's not clear to me what you mean by a "sigma multiplier". The formula for any number of sigma values is complicated.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 10 ·
Replies
10
Views
5K
Replies
5
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K