Prove Similar Triangles: $\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangles
Click For Summary
SUMMARY

The discussion centers on the proof of similarity between two triangles with sides $a, b, c$ and $a_1, b_1, c_1$. It establishes that these triangles are similar if and only if the equation $\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1}=\sqrt{(a+b+c)(a_1+b_1+c_1)}$ holds true. This condition provides a definitive criterion for triangle similarity based on the relationship between their corresponding side lengths.

PREREQUISITES
  • Understanding of triangle similarity criteria
  • Knowledge of square roots and their properties
  • Familiarity with algebraic manipulation
  • Basic geometry concepts related to triangles
NEXT STEPS
  • Study the properties of similar triangles in geometry
  • Explore proofs involving triangle similarity
  • Learn about the application of the triangle inequality theorem
  • Investigate advanced geometric concepts such as homothety
USEFUL FOR

Mathematics students, geometry enthusiasts, and educators looking to deepen their understanding of triangle similarity and related proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that two triangles with sides $a,\,b,\,c$ and $a_1,\,b_1,\,c_1$ are similar if and only if $\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1}=\sqrt{(a+b+c)(a_1+b_1+c_1)}$.
 
Mathematics news on Phys.org
anemone said:
Prove that two triangles with sides $a,\,b,\,c$ and $a_1,\,b_1,\,c_1$ are similar if and only if $\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1}=\sqrt{(a+b+c)(a_1+b_1+c_1)}$.
we have
$\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1}=\sqrt{(a+b+c)(a_1+b_1+c_1)}$.

$\equiv (\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1})^2=(a+b+c)(a_1+b_1+c_1)$

$\equiv aa_1+bb_1+cc_1+2\sqrt{aa_1bb_1} + 2\sqrt{bb_1cc_1} + 2\sqrt{cc_1aa_1} = aa_1+ab_1 + ac_1 + ba_1 + bb_1 + bc_1 + ca_1 + cb_1 + cc_1$

$\equiv 2\sqrt{aa_1bb_1} + 2\sqrt{bb_1cc_1} + 2\sqrt{cc_1aa_1} = ab_1 + ac_1 + ba_1 + bc_1 + ca_1 + cb_1$

$\equiv ab_1 + ac_1 + ba_1 + bc_1 + ca_1 + cb_1-2(\sqrt{aa_1bb_1} + 2\sqrt{bb_1cc_1} + 2\sqrt{cc_1aa_1}) = 0$

$\equiv (\sqrt{ab_1} - \sqrt{a_1b})^2 + (\sqrt{ac_1} - \sqrt{a_1c})^2 + (\sqrt{bc_1} - \sqrt{b_1c})^2 = 0$

The above is true iff $ab_1 = a_1b$, $ac_1 = a_1c$, $bc_1 = b_1c$

giving $\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1}$ or the 2 triangles are similar
 
Last edited by a moderator:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
22K
  • · Replies 19 ·
Replies
19
Views
3K