MHB Simpify Factored Form Equation

  • Thread starter Thread starter kato1
  • Start date Start date
  • Tags Tags
    Form
AI Thread Summary
The function f(x) = (x - (1+i))(x - (1-i)) is confirmed to be equivalent to the standard form f(x) = x^2 - 2x + 2. Using the quadratic formula, the roots are found to be 1 ± i, which leads to the factored form. Verification through expansion shows that both forms simplify to the same quadratic equation. The discussion highlights the importance of understanding complex numbers and their properties, particularly i^2 = -1, in simplifying expressions. The equivalence of the two forms is established through careful algebraic manipulation.
kato1
Messages
4
Reaction score
0
Simplify the function f(x)= (x-(1+i))(x-(1-i)) .

Is the function you wrote in factored form [ f(x)= (x-(1+i))(x-(1-i)) ] , the same as the original function in
standard form [ f(x) = x^2 - 2x +2) ] ?
 
Mathematics news on Phys.org
Hello and welcome to MHB! (Wave)

We typically like for our users to post their work so we can see where you are stuck and what you've tried. That being said, let's examine the function:

$$f(x)=x^2-2x+2$$

By the quadratic formula, we obtain the roots:

$$x=\frac{-(-2)\pm\sqrt{(-2)^2-4(1)(2)}}{2(1)}=\frac{2\pm\sqrt{-4}}{2}=1\pm i$$

Therefore, we know:

$$f(x)=x^2-2x+2=(x-(1+i))(x-(1-i))$$

Now, if we simply wish to verify this, we may take the factored form and expand it as follows:

$$(x-(1+i))(x-(1-i))=x^2-x(1-i)-x(1+i)+(1+i)(1-i)=$$

$$x^2-x+ix-x-ix+1-i^2=x^2-2x+2\quad\checkmark$$
 
MarkFL said:
Hello and welcome to MHB! (Wave)

We typically like for our users to post their work so we can see where you are stuck and what you've tried. That being said, let's examine the function:

$$f(x)=x^2-2x+2$$

By the quadratic formula, we obtain the roots:

$$x=\frac{-(-2)\pm\sqrt{(-2)^2-4(1)(2)}}{2(1)}=\frac{2\pm\sqrt{-4}}{2}=1\pm i$$

Therefore, we know:

$$f(x)=x^2-2x+2=(x-(1+i))(x-(1-i))$$

Now, if we simply wish to verify this, we may take the factored form and expand it as follows:

$$(x-(1+i))(x-(1-i))=x^2-x(1-i)-x(1+i)+(1+i)(1-i)=$$

$$x^2-x+ix-x-ix+1-i^2=x^2-2x+2\quad\checkmark$$

Hello. I'm confused as to how you get from x^2-x+ix-x-ix+1-i^2 to x^2-2x+2 . Can you please elaborate?
So far I've tried simplfying up to:
=x^2-x+ix-x-ix+1-i^2
= x^2-(x-x)+(ix-ix)+(1- √ ̅-1 )
= ?

Note: I substituted i^2 for √ ̅-1 .
Is (1- √ ̅-1 ) =2 ? And how? Thank you again.
 
Note that:

$$i\equiv\sqrt{-1}\therefore i^2=-1$$

And so:

$$x^2-x+ix-x-ix+1-i^2=x^2-x(1+1)+ix(1-1)+1-(-1)=x^2=x^2-2x+2$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top