MHB Simple closed form for integral

Click For Summary
The discussion revolves around finding a closed form for the integral involving trigonometric and logarithmic functions. The integral in question is $$\int_{0}^{1}t\cos(2t\pi)\tan(t\pi)\ln[\sin(t\pi)]\mathrm dt$$ and is proposed to equal $$\frac{1}{\pi}\cdot\frac{\ln 2}{2}(1-\ln 2)$$. Participants express a desire for hints to approach the solution, indicating a lack of progress over time. The request for assistance remains unanswered after multiple follow-ups. The conversation highlights the challenge of solving complex integrals in mathematical analysis.
Tony1
Messages
9
Reaction score
0
How may we go about to show that,

$$\int_{0}^{1}t\cos(2t\pi)\tan(t\pi)\ln[\sin(t\pi)]\mathrm dt=\color{green}{1\over \pi}\cdot\color{blue}{{\ln 2\over 2}(1-\ln 2)}$$
 
Mathematics news on Phys.org
A hint is requested ... (Blush)
 
lfdahl said:
A hint is requested ... (Blush)
can I get the hint?
 
64 days after my 1st request:

A hint is still requested ... (Wave)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K