loginorsinup
- 54
- 2
Homework Statement
Given the following wave function valid over -a \le x \le a and which is 0 elsewhere,
\psi(x) = 1/\sqrt{2a}
Find the uncertainty in \left<\left(\Delta p\right)^2\right> momentum, and the uncertainty product \left<\left(\Delta x\right)^2\right>\left<\left(\Delta p\right)^2\right>
Homework Equations
Expectation value of an observable \underline{\alpha}
\left<\alpha\right> = \int_{-\infty}^{\infty} \psi^*\alpha\psi\; dx
Heaviside / unit step function
H(x) = \begin{cases}1, x\ge 0\\0, \mathrm{otherwise}\end{cases}
Relationship between Heaviside and Dirac delta function
\delta(x) = \frac{dH(x)}{dx}
Uncertainty of an observable \underline{\alpha}
\begin{align*}<br /> \left<\left(\Delta\alpha\right)^2\right> &= \left<\left(\alpha - <br /> \left<\alpha\right>\right)^2\right>\\<br /> &= \left<\alpha^2\right> - \left<\alpha\right>^2<br /> \end{align*}
The Attempt at a Solution
To find the uncertainty in momentum, which is just the difference between the expectation value of the square of momentum and the expectation value of the momentum, I need to find \left<p\right> and \left<p^2\right>
First, the wave function and its conjugate can be written in terms of Heaviside functions.
\begin{align*}\psi(x) &= \frac{1}{\sqrt{2a}}\left[H(x+a)-H(x-a)\right]\\\psi^*(x) &= \frac{1}{\sqrt{2a}}\left[H(x+a)-H(x-a)\right]\end{align*}
Next, \left<p\right>
\left<p\right> = \int_{-\infty}^{\infty} \psi^*(x)\left[\frac{\hbar}{i}\frac{d}{dx}\right]\psi(x)\; dx
The derivative of \psi(x) is
\begin{align*}\frac{d\psi(x)}{dx} &= \frac{d}{dx}\left(\frac{1}{\sqrt{2a}}\left[H(x+a)-H(x-a)\right]\right)\\<br /> &= \frac{1}{\sqrt{2a}}\left[\delta(x+a)-\delta(x-a)\right]\end{align*}
So, \left<p\right> is
\begin{align*}\left<p\right> &= \int_{-\infty}^{\infty} \psi^*(x)\left[\frac{\hbar}{i}\frac{d}{dx}\right]\psi(x)\; dx\\<br /> &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2a}}\left[H(x+a)-H(x-a)\right]\frac{\hbar}{i} \frac{1}{\sqrt{2a}}\left[\delta(x+a)-\delta(x-a)\right]\; dx\\<br /> &= \frac{\hbar}{i2a}\int_{-\infty}^{\infty} \left[H(x+a)-H(x-a)\right]\left[\delta(x+a)-\delta(x-a)\right]\; dx\end{align*}
Distributing out results (FOILing), in all but the H(x-a)\delta(x+a) integrand component producing 1. The H(x-a)\delta(x+a) part produces 0 in the course of integration. In other words,
\begin{align*}\left<p\right> &= \frac{\hbar}{i2a}(1 - 1 + 0 + 1)\end{align*} = \frac{\hbar}{i2a}
First of all, is this reasonable for the momentum to have an expectation value that is imaginary?
Second, how would I compute \left<p^2\right> given that the second derivative of the wave function, which is summation of Heavisides, would result in a derivative of a Dirac delta function?
Thanks very much everyone! :)