The Energy Expectation Value for a Moving Hydrogen Atom

In summary, the author is summarizing the content of a conversation. The author states that the integral over ##X## collapses into a delta function, and that ##\psi_0## is normalized. The author then calculates the expectation value of ##\psi_0## and finds that it is equal to ##E_0 + \frac{\hbar^2 |K|^2}{2m}\right). The author also calculates the total energy of the system as\left(\frac{\hbar^2 |K|^2}{2m} + E_0\right)
  • #1
uxioq99
11
4
Homework Statement
Let ##\Psi(X, x, t)## be given by
##\Psi(X, x, t) = \int_{\mathbb R^3} g(K) \psi_0(x) e^{iK\cdot X + \left(\frac{\hbar^2 |K|^2}{2m} + E_0\right)} d^3 K##
where ##X## is the center of mass coordinate, ##x## is the relative coordinate, and ##t## is the time. ##\psi_0(x)## is a normalized eigenfunction of the relative Hamiltonian ##H_{\text{Rel}}## such that ##H_{\text{Rel}} \psi_0 (x) = E_0 \psi(x)##. ##g(k)## is a function that peaks in the neighborhood ##K \approx K_0##.
Relevant Equations
##\Psi(X, x, t) = \int_{\mathbb R^3} g(K) \psi_0(x) e^{iK\cdot X + -\frac{i}{\hbar} \left(\frac{\hbar^2 |K|^2}{2m} + E_0\right)} d^3 K##
##\begin{align}
\langle E \rangle &=
\int_{\mathbb R^3}
\int_{\mathbb R^3}
\int_{\mathbb R^3}
\int_{\mathbb R^3}
g^\dagger (\tilde K) g(K) |\psi_0(x)|^2
\left(E_0 +\frac{\hbar^2 |K|^2}{2m}\right)
e^{i(K-\tilde K)\cdot X -\frac{i}{\hbar} \left(\frac{\hbar^2 |K|^2}{2m}-\frac{\hbar^2 |K|^2}{2m}\right)}
d^3 K d^3 \tilde K d^3 x d^3 X \\
&=
\int_{\mathbb R^3} |\psi_0(x)|^2 d^3 x
\int_{\mathbb R^3}
\int_{\mathbb R^3}
\int_{\mathbb R^3}
e^{i(K-\tilde K)\cdot X} d^3 X
g^\dagger (\tilde K) g(K)
\left(E_0 +\frac{\hbar^2 |K|^2}{2m}\right)
e^{-\frac{i}{\hbar} \left(\frac{\hbar^2 |K|^2}{2m}-\frac{\hbar^2 |K|^2}{2m}\right)}
d^3 K
d^3 \tilde K
\\ &=
\left(\frac{\hbar^2 |K|^2}{2m} + E_0\right)
\end{align}##

as the integral over ##X## collapses into a delta function, ##\psi_0## is normalized, and both integrals peak at ##K_0##. Is my reasoning correct? I apologize in advance if my math is poorly formatted. I am still new to the site.

Do I need a factor of ##2 \pi## for the delta function? The expectation value must real because it is observed right? So, I believe that the phase must cancel. Originally, I was curious if one could argue that
##\frac{\hbar^2 |K|^2 - \hbar^2 |\tilde K|^2}{2m} \approx A \frac{\hbar^2 2K}{2m}##
when ##|K-\tilde K|\le\epsilon## and
##A = \frac{1}{\frac{4}{3}\pi\epsilon^3} \int_{\mathcal B(K, \epsilon)} |\tilde K| - |K| d^3 \tilde K##
fixing ##K## and considering ##\tilde K## to be free. This strengthening of the approximation would have introduced a phase. Is that why ##X## has to introduce the ##\delta## function to cancel it out. What are the purpose of ##g(K)## and ##g^\dagger (\tilde K)##?
 
Last edited:
Physics news on Phys.org
  • #2
I observe time t is missing which should appear in the phase factor. I do not catch "relative" Hamiltonian relative to what, and what is small k.
 
Last edited:
  • #3
For clarification: If you treat the hydrogen atom as a (non-relativistic) two-body problem with the proton and the electron, then you can introduce new coordinates, the center of mass and relative coordinates,
$$\vec{X}=\frac{1}{M}(m_e \vec{x}_e + m_p \vec{x}_p), \quad \vec{x}=\vec{x}_e-\vec{x}_p.$$
Since there are no operator-ordering problems in writing down the Hamiltonian, working in Gaussian electromagnetic units,
$$\hat{H}=\frac{\vec{p}_e^2}{2m_e} + \frac{\vec{p}_p^2}{2m_p} -\frac{e^2}{|\vec{x}_e-\vec{x}_p|}$$
in terms of the new coordinates and canonical momenta: The canonically conjugated momentum to ##\vec{X}## is ##\vec{P}=\vec{p}_e+\vec{p}_p##, i.e., the total momentum of the entire hydrogen atom, and the canonical momentum to ##\vec{x}## is given by ##\vec{p}=\mu \mathring{\vec{x}}##, where ##\mu=m_e m_p/M## is the reduced mass of the electron-proton system. The Hamiltonian expressed in these coordinates and their conjugate momenta reads
$$\hat{H}=\frac{1}{2M} \vec{P}^2 + \frac{\vec{p}^2}{2 \mu} -\frac{e^2}{r}=\hat{H}\, \quad r=|\vec{x}|.$$
The center of mass thus moves as a free particle, and the energy eigenfunctions are the product of these free-particle energy-eigenfunctions with the usual hydrogensolutions ##\psi_{n \ell m}(\vec{x})##. For the center-of-mass energy eigenfunctions it's most convenient to choose the corresponding momentum eigenfunctions, i.e., the plane waves,
$$u_{\vec{P}}(\vec{X})=\frac{1}{(2 \pi \hbar)^{3/2}} \exp(\mathrm{i} \vec{X} \cdot \vec{P}).$$
With these you build your wave packet for the center-of-mass motion as given as "Relevant Equation".

For the OP: Your reasoning is almost right. You only forgot the normalization factor ##1/(2 \pi \hbar)^{3/2}##. Also I don't understand, why you first calculate the position representation for the center-mass wave function. It's much simpler to just stay in the momentum-representation, i.e., work with the two-body function
$$\Psi(\vec{P},\vec{x})=g(\vec{P}) \psi_0(\vec{x}).$$
Then you don't need to do any calculations at all ;-)).
 
  • Like
Likes uxioq99
  • #4
@vanhees71 Thank you so much for the insight. I didn't mention this originally, but the question asked me to solve it in position space as a way to build my mathematical stamina. I agree that it would have been nicer in momentum space. @anuttarasammyak Sorry, that I forgot the factor of ##t## while I was typing. ##k## was also supposed to be ##K##. I just joined the site a week ago, and I still don't know how to preview my latex. Is there a button I should be pressing? Thanks again.
 
  • Like
Likes vanhees71 and anuttarasammyak
  • #5
1676160368436.png

Preview button is on the right side up.
 
  • Like
Likes vanhees71 and uxioq99

1. What is the Energy Expectation Value for a Moving Hydrogen Atom?

The Energy Expectation Value for a Moving Hydrogen Atom is a measure of the average energy of a hydrogen atom as it moves through space. It takes into account both the kinetic energy of the moving atom and the potential energy due to its interaction with other particles or fields.

2. How is the Energy Expectation Value calculated?

The Energy Expectation Value is calculated using the Schrödinger equation, which describes the behavior of quantum particles. It involves solving for the wave function of the hydrogen atom and then using that to calculate the expectation value of the energy operator.

3. Why is the Energy Expectation Value important?

The Energy Expectation Value is important because it allows us to make predictions about the behavior of hydrogen atoms in various situations. It can help us understand the stability of atoms, their interactions with other particles, and their behavior in different energy states.

4. How does the Energy Expectation Value change as the hydrogen atom moves?

The Energy Expectation Value can change as the hydrogen atom moves due to changes in its kinetic and potential energy. For example, if the atom is moving faster, its kinetic energy will increase, leading to a higher Energy Expectation Value. Additionally, changes in the atom's position and the strength of its interactions with other particles can also affect the Energy Expectation Value.

5. Can the Energy Expectation Value be measured experimentally?

Yes, the Energy Expectation Value can be measured experimentally using techniques such as spectroscopy. By analyzing the light emitted or absorbed by a moving hydrogen atom, scientists can determine its energy levels and calculate the Energy Expectation Value. However, due to the uncertainty principle in quantum mechanics, the exact value may not be measurable, but rather a range of possible values can be determined.

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
30
Views
1K
  • Advanced Physics Homework Help
Replies
4
Views
414
  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
917
  • Advanced Physics Homework Help
Replies
2
Views
899
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
7
Views
1K
  • Advanced Physics Homework Help
Replies
5
Views
1K
  • Advanced Physics Homework Help
Replies
8
Views
1K
Back
Top