Von Neumann
- 101
- 4
Problem:
I'm trying to crudely prove the following:
\frac{{\partial}B}{{\partial}x}=-\mu_{o}\epsilon_{o}\frac{{\partial}E}{{\partial}t}
Solution (so far):
I can get the derivation, but the minus sign eludes me somehow...
Integrating over a thing rectangular loop of length l and width dx, start with the following,
\oint{B{\cdot}dl}=\mu_{o}\epsilon_{o}\frac{\partial{\Phi_{E}}}{\partial{t}}
Then,
\oint{B{\cdot}dl}=(B+dE)l-Bl=dEl
Also,
\Phi_{E}=EA=E(dx)(l)
∴\frac{\partial{\Phi_{E}}}{\partial{t}}=\frac{\partial{E}}{\partial{t}}dxl
Equating the equations above,
dEl=\mu_{o}\epsilon_{o}\frac{\partial{E}}{\partial{t}}dxl
dE=\mu_{o}\epsilon_{o}\frac{\partial{E}}{\partial{t}}dx
\frac{\partial{E}}{\partial{x}}=\mu_{o}\epsilon_{o}\frac{\partial{E}}{\partial{t}}
Any advice is greatly appreciated.
I'm trying to crudely prove the following:
\frac{{\partial}B}{{\partial}x}=-\mu_{o}\epsilon_{o}\frac{{\partial}E}{{\partial}t}
Solution (so far):
I can get the derivation, but the minus sign eludes me somehow...
Integrating over a thing rectangular loop of length l and width dx, start with the following,
\oint{B{\cdot}dl}=\mu_{o}\epsilon_{o}\frac{\partial{\Phi_{E}}}{\partial{t}}
Then,
\oint{B{\cdot}dl}=(B+dE)l-Bl=dEl
Also,
\Phi_{E}=EA=E(dx)(l)
∴\frac{\partial{\Phi_{E}}}{\partial{t}}=\frac{\partial{E}}{\partial{t}}dxl
Equating the equations above,
dEl=\mu_{o}\epsilon_{o}\frac{\partial{E}}{\partial{t}}dxl
dE=\mu_{o}\epsilon_{o}\frac{\partial{E}}{\partial{t}}dx
\frac{\partial{E}}{\partial{x}}=\mu_{o}\epsilon_{o}\frac{\partial{E}}{\partial{t}}
Any advice is greatly appreciated.