1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Simplifying a product of sin functions

  1. Jul 15, 2007 #1
    can someone please simplify?

    [tex]\sin \frac{\pi}{n} \sin \frac{2\pi}{n} ... \sin \frac{(n-1)\pi}{n}[/tex]
  2. jcsd
  3. Jul 15, 2007 #2
    distribute the pi on (n-1) and simplify the fraction you'll get. and use a trig identity to separate the new fraction
  4. Jul 15, 2007 #3
    Complex Numbers are the key here.

    Consider the polynomial,
    [tex]\Phi(z) = 1+z+z^2+...+z^{n-1} = (z - \zeta)(z-\zeta^2)...(z-\zeta^{n-1})[/tex] where [tex]\zeta = \cos \frac{2\pi }{n} + i\sin \frac{2\pi }{n}[/tex].

    [tex]\Phi(1) = \overbrace{1+1+...+1}^n = \prod_{k=1}^{n-1} \left( 1 - \zeta^k \right)[/tex]

    [tex]n = \prod_{k=1}^{n-1} \left( 1 - \cos \frac{2\pi k}{n} - i \sin \frac{2\pi k}{n} \right) [/tex].

    [tex]|n| = \prod_{k=1}^{n-1} \left| 1 - \cos \frac{2\pi k}{n} - i \sin \frac{2\pi k}{n} \right| [/tex]

    [tex]\left| 1 - \cos \frac{2\pi k}{n} - i \sin \frac{2\pi k}{n} \right| =\sqrt{ \left(1 - \cos \frac{2\pi k}{n} \right)^2 + \sin^2 \frac{2\pi k}{n} }= \sqrt{1 -2\cos \frac{2\pi k}{n}+ \cos^2\frac{2\pi k}{n} + \sin^2 \frac{2\pi k}{n}}[/tex]
    [tex] = \sqrt{2\left( 1 - \cos \frac{2\pi k}{n} \right)} = \sqrt{4\sin^2 \frac{\pi k}{n}} = 2\sin \frac{\pi k}{n}[/tex]

    [tex]|n|=n = \prod_{k=1}^{n-1} 2\sin \frac{\pi k}{n}

    [tex] n = 2^{n-1} \sin \frac{\pi }{n} \cdot \sin \frac{2\pi}{n} \cdot ... \cdot \sin \frac{\pi (n-1)}{n}[/tex]

    That means,
    [tex]\sin \frac{\pi }{n} \cdot \sin \frac{2\pi}{n} \cdot ... \cdot \sin \frac{ (n-1)\pi}{n} = \frac{n}{2^{n-1}}[/tex]
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook