MHB Simplifying compound fractions

AI Thread Summary
To simplify the compound fraction [1/(1+x+h) - 1/(1+x)] / h, finding a common denominator for the top two fractions is essential. The common denominator is (1+x+h)(1+x), allowing for the expression to be rewritten as [(1+x) - (1+x+h)] / [(1+x+h)(1+x)]. This results in a simplified numerator of -h, leading to the overall simplification of the compound fraction. The final expression can be further reduced by dividing by h, yielding -1/[(1+x+h)(1+x)]. Understanding how to manipulate common denominators is crucial in simplifying such fractions effectively.
datafiend
Messages
31
Reaction score
0
Hi all,
I'm having a problem simplifying this:

[1/(1+x+h) - 1/(1+x)] / h

How do you get the common denominators for the top 2 fractions?

Thanks
 
Mathematics news on Phys.org
Maybe try to find a common denominator for 1+x+h and 1+x.

$(1+x+h)\times(1+h) = x^2+x(2+h)+1+h$
 
Last edited:
In the numerator, I would use:

$$\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}$$
 
mark,
thanks again!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top