MHB Simplifying polynomial fraction

coolbeans33
Messages
23
Reaction score
0
so I was reading my textbook and was showing steps on applying the quotient rule to the function: y=ex/(1+x2)

it went from (1+x2)(ex)-(ex)(2x)/(1+x2)2

to ex(1-x)2/(1+x2)2

I understand the first step, but don't get how they got to ex(1-x)2 in the numerator. can someone please explain the steps to me?
 
Mathematics news on Phys.org
Re: simplifying polynomial fraction

coolbeans33 said:
so I was reading my textbook and was showing steps on applying the quotient rule to the function: y=ex/(1+x2)

it went from (1+x2)(ex)-(ex)(2x)/(1+x2)2

to ex(1-x)2/(1+x2)2

I understand the first step, but don't get how they got to ex(1-x)2 in the numerator. can someone please explain the steps to me?

For starters, I think you meant to say
\[\frac{(1+x^2)(e^x) - (e^x)(2x)}{(1+x^2)^2}.\]
The first thing to note here is that there's a common factor of $e^x$ in the numerator, i.e.
\[\frac{(\color{blue}{1+x^2})(\color{red}{e^x}) - (\color{red}{e^x})(\color{blue}{2x})}{(1+x^2)^2} = \frac{\color{red}{e^x}(\color{blue}{1+x^2}-\color{blue}{2x})}{(1+x^2)^2} = \frac{e^x(x^2-2x+1)}{(1+x^2)^2}.\]
Can you take things from here?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
4K
Replies
3
Views
2K
Replies
10
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
6
Views
2K
Back
Top