Simpliying this partial differential equation

Click For Summary
The discussion revolves around simplifying a partial differential equation involving variables x, y, and z, with a focus on the implications of the delta function terms. The participants clarify the range of the index i and the relationship between the variables w^i and x, y, z, establishing that x, y, and z can be expressed as functions of w. The equation is transformed into a form that relates U and V, leading to the conclusion that the off-diagonal terms must equal zero, resulting in a unique solution for V. Ultimately, the findings suggest that y equals x plus a constant k, and z equals two times x plus the same constant k. The discussion concludes with appreciation for the clarification provided.
Safinaz
Messages
255
Reaction score
8
Homework Statement
How to simplify this partial differential equation?
Relevant Equations
Hello, I need help in this simple example:

Consider for instance a partial differential equation:

##
(x + y ) \delta_{ij} + \partial_i \partial_j x = \partial_i \partial_j y + z \delta_{ij} , ##

where ## \delta_{ij} = (-1,1,1,1) ## is a diagonal metric, and ##x ## , ##y ##, and ##z ## are functions in ##i,j## .
Does this equation mean that:

## x+y =z ##, and
## x = y##?

I mean ## \delta_{ij} ## terms in the LHS of the eqaution equal those at the RHS ?

with knowing that ## \partial_i \partial_j x ## term dose not vanish for ## \delta_{ij}=1 ##


Any help is appreciated!
 
Physics news on Phys.org
Safinaz said:
Any help is appreciated!
I think your notation is confusing. Can you clarify:
  • What range does the index ##i## run over: ##\left( 1,2,3\right)## or ##\left( 0,1,2,3\right)## or something else?
  • What explicitly are the variables ##w^i## that you are differentiating with respect to, i.e., ##\partial_{i}=\partial/\partial w^{i}##?
  • How are these variables related to ##x,y,z##?
 
renormalize said:
I think your notation is confusing. Can you clarify:
  • What range does the index ##i## run over: ##\left( 1,2,3\right)## or ##\left( 0,1,2,3\right)## or something else?
  • What explicitly are the variables ##w^i## that you are differentiating with respect to, i.e., ##\partial_{i}=\partial/\partial w^{i}##?

renormalize said:
How are these variables related to ##x,y,z##?
Hi, thanks for reply.

  • What range does the index ##i## run over: ##\left( 1,2,3\right)## or ##\left( 0,1,2,3\right)## or something else? Ans.: ##\left( 0,1,2,3\right)##
  • What explicitly are the variables ##w^i## that you are differentiating with respect to, i.e., ##\partial_{i}=\partial/\partial w^{i}##? Ans.: It is ##\partial_{i}=\partial/\partial w^{i}##?
  • How are these variables related to ##x,y,z##? Ans.: consider for instance ##\partial_{i} x =\partial x /\partial w^{i} ##. So that x, y and z can be written explicitly as x(w), y(w), and z(w).
 
OK, thanks for clearing things up!
So we have:$$\left(x+y\right)\delta_{ij}+\frac{\partial^{2}x}{\partial w^{i}\partial w^{j}}=\frac{\partial^{2}y}{\partial w^{i}\partial w^{j}}+z\delta_{ij}\;\Rightarrow\;\left(x+y-z\right)\delta_{ij}=\frac{\partial^{2}\left(y-x\right)}{\partial w^{i}\partial w^{j}}$$or:$$U\delta_{ij}=\frac{\partial^{2}V}{\partial w^{i}\partial w^{j}}\quad\text{where}\quad U\equiv x+y-z,\;V\equiv y-x\tag{1a,b,c}$$Contracting (1a) with ##\delta^{ij}## gives ##4U=\partial^{2}V/\partial w^{i}\partial w_{i}\equiv\square V##, leading to:$$\frac{1}{4}\square V\delta_{ij}=\frac{\partial^{2}V}{\partial w^{i}\partial w^{j}},\quad U=\frac{1}{4}\square V\tag{2a,b}$$The off-diagonal (##i\neq j##) terms of (2a) are: $$0=\partial_{0}\partial_{1}V=\partial_{0}\partial_{2}V=\partial_{0}\partial_{3}V=\partial_{1}\partial_{2}V=\partial_{1}\partial_{3}V=\partial_{2}\partial_{3}V$$with the unique solution ##V=k##, where ##k## is an arbitrary constant. Thus, ##U=\frac{1}{4}\square V=0##, and from (1b,c) we get finally:$$y=x+k,\;z=2x+k\;\left( x\text{ an arbitrary function},\;k\text{ an arbitrary constant}\right)$$
 
Last edited:
Thanks so much for the answer : )
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...