MHB Simultaneous Equations Challenge

AI Thread Summary
The discussion revolves around solving a system of equations involving variables a and b. Participants highlight the importance of recognizing that a equals negative b, which simplifies the problem. Trigonometric substitution is suggested as a useful technique for finding the solution. One participant expresses appreciation for another's contribution to the challenge. The conversation emphasizes collaboration and sharing different methods for solving mathematical problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the system of equations below:

$(a+\sqrt{a^2+1})(b+\sqrt{b^2+1})=1$

$b+\dfrac{b}{\sqrt{a^2-1}}+\dfrac{35}{12}=0$
 
Mathematics news on Phys.org
anemone said:
Solve the system of equations below:

$(a+\sqrt{a^2+1})(b+\sqrt{b^2+1})=1$

$b+\dfrac{b}{\sqrt{a^2-1}}+\dfrac{35}{12}=0$
From the 2nd equation we have b < 0 say - c

So from 1 we get $(\sqrt{a^2+1}+a)(\sqrt{c^2+1}-c) = 1$
as we have $(\sqrt{a^2+1}+a)(\sqrt{a^2+1}-a) = 1$
so we get $\sqrt{a^2+1}-a= \sqrt{c^2+1}-c$
as $\sqrt{a^2+1}-a$ is monotonically decreasing we get $a =c$
hence $b = - a$
now from second putting $a=\sec\,t$

$\sec\,t + \sec\,t \,\cot\,t = \dfrac{35}{12}$

or $\dfrac{\sin\,t + \cos\,t}{\sin\,t\cos\,t}= \dfrac{35}{12}$
square both sides and put $\sin\,t\cos\,t= y$

to get $\dfrac{1+2y}{y^2} = \dfrac{1225}{144}$
add 1 on both sides to get
$\dfrac{1+2y+y^2}{y^2} = \dfrac{1369}{144}$
take square root of both sides knowing that y is positive

$\dfrac{1+y}{y} = \dfrac{37}{12}$
or $y = \dfrac{12}{25}$

$\sin\,t \cos\,t = \dfrac{12}{25}$

as $(\dfrac{3}{5})^2 + (\dfrac{4}{5})^2 = 1 $

and product is $\dfrac{12}{25}$

$\sin\,t = \dfrac{3}{5} \, \cos\,t =\dfrac{4}{5}$

or

$\cos \,t = \dfrac{3}{5} \, \sin\,t =\dfrac{4}{5}$hence
$a = \dfrac{5}{4}, b = - \dfrac{5}{4}$

or
$a = \dfrac{5}{3}, b = - \dfrac{5}{3}$
 
kaliprasad said:
From the 2nd equation we have b < 0 say - c

So from 1 we get $(\sqrt{a^2+1}+a)(\sqrt{c^2+1}-c) = 1$
as we have $(\sqrt{a^2+1}+a)(\sqrt{a^2+1}-a) = 1$
so we get $\sqrt{a^2+1}-a= \sqrt{c^2+1}-c$
as $\sqrt{a^2+1}-a$ is monotonically decreasing we get $a =c$
hence $b = - a$
now from second putting $a=\sec\,t$

$\sec\,t + \sec\,t \,\cot\,t = \dfrac{35}{12}$

or $\dfrac{\sin\,t + \cos\,t}{\sin\,t\cos\,t}= \dfrac{35}{12}$
square both sides and put $\sin\,t\cos\,t= y$

to get $\dfrac{1+2y}{y^2} = \dfrac{1225}{144}$
add 1 on both sides to get
$\dfrac{1+2y+y^2}{y^2} = \dfrac{1369}{144}$
take square root of both sides knowing that y is positive

$\dfrac{1+y}{y} = \dfrac{37}{12}$
or $y = \dfrac{12}{25}$

$\sin\,t \cos\,t = \dfrac{12}{25}$

as $(\dfrac{3}{5})^2 + (\dfrac{4}{5})^2 = 1 $

and product is $\dfrac{12}{25}$

$\sin\,t = \dfrac{3}{5} \, \cos\,t =\dfrac{4}{5}$

or

$\cos \,t = \dfrac{3}{5} \, \sin\,t =\dfrac{4}{5}$hence
$a = \dfrac{5}{4}, b = - \dfrac{5}{4}$

or
$a = \dfrac{5}{3}, b = - \dfrac{5}{3}$

Very nicely done, kaliprasad!:cool:
 
anemone said:
Very nicely done, kaliprasad!:cool:

Thanks, I would like to have a look at another different solution in case you have any
 
kaliprasad said:
Thanks, I would like to have a look at another different solution in case you have any

Nope, my solution is more or less the same as yours, because the trick to solve this problem is to recognize that $a=-b$ and then we have to opt for the trigonometric substitution skill to solve for the rest.

Again, thanks so much for participating in my recent challenges at MHB, kali!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top