Simultaneous Equations Challenge

Click For Summary
SUMMARY

The discussion centers on solving the simultaneous equations defined by the expressions $(a+\sqrt{a^2+1})(b+\sqrt{b^2+1})=1$ and $b+\dfrac{b}{\sqrt{a^2-1}}+\dfrac{35}{12}=0$. Participants highlight the key insight that $a=-b$ simplifies the problem significantly. The use of trigonometric substitution is emphasized as a crucial technique for finding the solution. The conversation showcases collaborative problem-solving and encourages exploring multiple solution methods.

PREREQUISITES
  • Understanding of simultaneous equations
  • Knowledge of trigonometric substitution techniques
  • Familiarity with algebraic manipulation involving square roots
  • Basic skills in solving non-linear equations
NEXT STEPS
  • Study trigonometric substitution methods in depth
  • Practice solving simultaneous equations with different algebraic techniques
  • Explore advanced topics in non-linear equations
  • Learn about the properties of square roots in algebraic expressions
USEFUL FOR

Mathematics students, educators, and anyone interested in enhancing their problem-solving skills in algebra and trigonometry.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the system of equations below:

$(a+\sqrt{a^2+1})(b+\sqrt{b^2+1})=1$

$b+\dfrac{b}{\sqrt{a^2-1}}+\dfrac{35}{12}=0$
 
Mathematics news on Phys.org
anemone said:
Solve the system of equations below:

$(a+\sqrt{a^2+1})(b+\sqrt{b^2+1})=1$

$b+\dfrac{b}{\sqrt{a^2-1}}+\dfrac{35}{12}=0$
From the 2nd equation we have b < 0 say - c

So from 1 we get $(\sqrt{a^2+1}+a)(\sqrt{c^2+1}-c) = 1$
as we have $(\sqrt{a^2+1}+a)(\sqrt{a^2+1}-a) = 1$
so we get $\sqrt{a^2+1}-a= \sqrt{c^2+1}-c$
as $\sqrt{a^2+1}-a$ is monotonically decreasing we get $a =c$
hence $b = - a$
now from second putting $a=\sec\,t$

$\sec\,t + \sec\,t \,\cot\,t = \dfrac{35}{12}$

or $\dfrac{\sin\,t + \cos\,t}{\sin\,t\cos\,t}= \dfrac{35}{12}$
square both sides and put $\sin\,t\cos\,t= y$

to get $\dfrac{1+2y}{y^2} = \dfrac{1225}{144}$
add 1 on both sides to get
$\dfrac{1+2y+y^2}{y^2} = \dfrac{1369}{144}$
take square root of both sides knowing that y is positive

$\dfrac{1+y}{y} = \dfrac{37}{12}$
or $y = \dfrac{12}{25}$

$\sin\,t \cos\,t = \dfrac{12}{25}$

as $(\dfrac{3}{5})^2 + (\dfrac{4}{5})^2 = 1 $

and product is $\dfrac{12}{25}$

$\sin\,t = \dfrac{3}{5} \, \cos\,t =\dfrac{4}{5}$

or

$\cos \,t = \dfrac{3}{5} \, \sin\,t =\dfrac{4}{5}$hence
$a = \dfrac{5}{4}, b = - \dfrac{5}{4}$

or
$a = \dfrac{5}{3}, b = - \dfrac{5}{3}$
 
kaliprasad said:
From the 2nd equation we have b < 0 say - c

So from 1 we get $(\sqrt{a^2+1}+a)(\sqrt{c^2+1}-c) = 1$
as we have $(\sqrt{a^2+1}+a)(\sqrt{a^2+1}-a) = 1$
so we get $\sqrt{a^2+1}-a= \sqrt{c^2+1}-c$
as $\sqrt{a^2+1}-a$ is monotonically decreasing we get $a =c$
hence $b = - a$
now from second putting $a=\sec\,t$

$\sec\,t + \sec\,t \,\cot\,t = \dfrac{35}{12}$

or $\dfrac{\sin\,t + \cos\,t}{\sin\,t\cos\,t}= \dfrac{35}{12}$
square both sides and put $\sin\,t\cos\,t= y$

to get $\dfrac{1+2y}{y^2} = \dfrac{1225}{144}$
add 1 on both sides to get
$\dfrac{1+2y+y^2}{y^2} = \dfrac{1369}{144}$
take square root of both sides knowing that y is positive

$\dfrac{1+y}{y} = \dfrac{37}{12}$
or $y = \dfrac{12}{25}$

$\sin\,t \cos\,t = \dfrac{12}{25}$

as $(\dfrac{3}{5})^2 + (\dfrac{4}{5})^2 = 1 $

and product is $\dfrac{12}{25}$

$\sin\,t = \dfrac{3}{5} \, \cos\,t =\dfrac{4}{5}$

or

$\cos \,t = \dfrac{3}{5} \, \sin\,t =\dfrac{4}{5}$hence
$a = \dfrac{5}{4}, b = - \dfrac{5}{4}$

or
$a = \dfrac{5}{3}, b = - \dfrac{5}{3}$

Very nicely done, kaliprasad!:cool:
 
anemone said:
Very nicely done, kaliprasad!:cool:

Thanks, I would like to have a look at another different solution in case you have any
 
kaliprasad said:
Thanks, I would like to have a look at another different solution in case you have any

Nope, my solution is more or less the same as yours, because the trick to solve this problem is to recognize that $a=-b$ and then we have to opt for the trigonometric substitution skill to solve for the rest.

Again, thanks so much for participating in my recent challenges at MHB, kali!
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
913
  • · Replies 13 ·
Replies
13
Views
3K