MHB Simultaneous Equations Challenge

Click For Summary
The discussion revolves around solving a system of equations involving variables a and b. Participants highlight the importance of recognizing that a equals negative b, which simplifies the problem. Trigonometric substitution is suggested as a useful technique for finding the solution. One participant expresses appreciation for another's contribution to the challenge. The conversation emphasizes collaboration and sharing different methods for solving mathematical problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the system of equations below:

$(a+\sqrt{a^2+1})(b+\sqrt{b^2+1})=1$

$b+\dfrac{b}{\sqrt{a^2-1}}+\dfrac{35}{12}=0$
 
Mathematics news on Phys.org
anemone said:
Solve the system of equations below:

$(a+\sqrt{a^2+1})(b+\sqrt{b^2+1})=1$

$b+\dfrac{b}{\sqrt{a^2-1}}+\dfrac{35}{12}=0$
From the 2nd equation we have b < 0 say - c

So from 1 we get $(\sqrt{a^2+1}+a)(\sqrt{c^2+1}-c) = 1$
as we have $(\sqrt{a^2+1}+a)(\sqrt{a^2+1}-a) = 1$
so we get $\sqrt{a^2+1}-a= \sqrt{c^2+1}-c$
as $\sqrt{a^2+1}-a$ is monotonically decreasing we get $a =c$
hence $b = - a$
now from second putting $a=\sec\,t$

$\sec\,t + \sec\,t \,\cot\,t = \dfrac{35}{12}$

or $\dfrac{\sin\,t + \cos\,t}{\sin\,t\cos\,t}= \dfrac{35}{12}$
square both sides and put $\sin\,t\cos\,t= y$

to get $\dfrac{1+2y}{y^2} = \dfrac{1225}{144}$
add 1 on both sides to get
$\dfrac{1+2y+y^2}{y^2} = \dfrac{1369}{144}$
take square root of both sides knowing that y is positive

$\dfrac{1+y}{y} = \dfrac{37}{12}$
or $y = \dfrac{12}{25}$

$\sin\,t \cos\,t = \dfrac{12}{25}$

as $(\dfrac{3}{5})^2 + (\dfrac{4}{5})^2 = 1 $

and product is $\dfrac{12}{25}$

$\sin\,t = \dfrac{3}{5} \, \cos\,t =\dfrac{4}{5}$

or

$\cos \,t = \dfrac{3}{5} \, \sin\,t =\dfrac{4}{5}$hence
$a = \dfrac{5}{4}, b = - \dfrac{5}{4}$

or
$a = \dfrac{5}{3}, b = - \dfrac{5}{3}$
 
kaliprasad said:
From the 2nd equation we have b < 0 say - c

So from 1 we get $(\sqrt{a^2+1}+a)(\sqrt{c^2+1}-c) = 1$
as we have $(\sqrt{a^2+1}+a)(\sqrt{a^2+1}-a) = 1$
so we get $\sqrt{a^2+1}-a= \sqrt{c^2+1}-c$
as $\sqrt{a^2+1}-a$ is monotonically decreasing we get $a =c$
hence $b = - a$
now from second putting $a=\sec\,t$

$\sec\,t + \sec\,t \,\cot\,t = \dfrac{35}{12}$

or $\dfrac{\sin\,t + \cos\,t}{\sin\,t\cos\,t}= \dfrac{35}{12}$
square both sides and put $\sin\,t\cos\,t= y$

to get $\dfrac{1+2y}{y^2} = \dfrac{1225}{144}$
add 1 on both sides to get
$\dfrac{1+2y+y^2}{y^2} = \dfrac{1369}{144}$
take square root of both sides knowing that y is positive

$\dfrac{1+y}{y} = \dfrac{37}{12}$
or $y = \dfrac{12}{25}$

$\sin\,t \cos\,t = \dfrac{12}{25}$

as $(\dfrac{3}{5})^2 + (\dfrac{4}{5})^2 = 1 $

and product is $\dfrac{12}{25}$

$\sin\,t = \dfrac{3}{5} \, \cos\,t =\dfrac{4}{5}$

or

$\cos \,t = \dfrac{3}{5} \, \sin\,t =\dfrac{4}{5}$hence
$a = \dfrac{5}{4}, b = - \dfrac{5}{4}$

or
$a = \dfrac{5}{3}, b = - \dfrac{5}{3}$

Very nicely done, kaliprasad!:cool:
 
anemone said:
Very nicely done, kaliprasad!:cool:

Thanks, I would like to have a look at another different solution in case you have any
 
kaliprasad said:
Thanks, I would like to have a look at another different solution in case you have any

Nope, my solution is more or less the same as yours, because the trick to solve this problem is to recognize that $a=-b$ and then we have to opt for the trigonometric substitution skill to solve for the rest.

Again, thanks so much for participating in my recent challenges at MHB, kali!
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K