Singularities, Residues, and Computation: Analyzing $f(z)$ without Prefix

  • Context: MHB 
  • Thread starter Thread starter pantboio
  • Start date Start date
  • Tags Tags
    Singularities
Click For Summary
SUMMARY

The discussion focuses on the function $$f(z)=\frac{z+5}{e^{\frac{1}{z}}-3$$, analyzing its singularities and computing residues. The identified singularities include $0$, $\infty$, and the zeros of the denominator, with $0$ classified as an essential singularity and $\infty$ as a simple pole. The residue at $z=0$ is computed as $r_{0}=-\frac{5}{4}$ using a change of variable to $s=\frac{1}{z}$ and the McLaurin expansion of $$g(s)=\frac{1}{e^{s}-3}$$. The discussion raises a critical question regarding the computation of residues at non-isolated singularities, concluding that residues are typically defined only at isolated singularities.

PREREQUISITES
  • Complex analysis fundamentals
  • Understanding of singularities and poles
  • Familiarity with Laurent series and residue computation
  • Knowledge of McLaurin series expansion
NEXT STEPS
  • Study the definition and properties of isolated vs. non-isolated singularities in complex analysis
  • Learn about residue theorem applications in contour integration
  • Explore the McLaurin series and its applications in residue calculations
  • Investigate the implications of essential singularities on function behavior
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in advanced calculus and residue theory will benefit from this discussion.

pantboio
Messages
43
Reaction score
0
Consider $$f(z)=\frac{z+5}{e^\frac{1}{z}-3}$$ Find and classify its singularities and compute residues.
I think singularities are: $0,\infty$ and zeroes of denominators. We have $e^{\frac{1}{z}}=3$ for $z=(log(3)+2k\pi i)^{-1}$. I think $0$ is essential, $\infty$ a simple pole and zeroes of denominator are simple poles.
How can i prove this facts, and how to compute residues?
 
Physics news on Phys.org
pantboio said:
Consider $$f(z)=\frac{z+5}{e^\frac{1}{z}-3}$$ Find and classify its singularities and compute residues.
I think singularities are: $0,\infty$ and zeroes of denominators. We have $e^{\frac{1}{z}}=3$ for $z=(log(3)+2k\pi i)^{-1}$. I think $0$ is essential, $\infty$ a simple pole and zeroes of denominator are simple poles.
How can i prove this facts, and how to compute residues?
Computing the residue in $z=0$ is highly simplified with the change of variable $s=\frac{1}{z}$, so that the function 'under investigation' is...

$\displaystyle f(s)= \frac{1 + 5\ s}{s\ (e^{s}-3)}$ (1)

It is clear that the residue of f(z) in z=0 is the coefficint of the first order of the Laurent expansion of f(s) in s=0, so that we first find the McLaurin expansion of $\displaystyle g(s)=\frac{1}{e^{s}-3}$. We obtain...

$\displaystyle g(s)= \frac{1}{e^{s}-3} \implies a_{0}= - \frac{1}{2}$

$\displaystyle g^{\ '}(s)= - \frac{e^{s}}{(e^{s}-3)^{2}} \implies a_{1}= - \frac{1}{4}$

$\displaystyle g^{\ ''}(s)= \frac{2\ e^{2\ s}}{(e^{s}-3)^{3}} + \frac{e^{s}}{(e^{s}-3)^{2}} \implies a_{2}=0$

... so that is...

$\displaystyle f(s) = \frac{1+5\ s}{s}\ \{-\frac{1}{2} - \frac{1}{4}\ s + 0\ s^{2} + \mathcal{O} (s^{3})\}$ (2)

... and from (1) we obtain easily that the residue of f(z) in z=0 is $r_{0}=- \frac{5}{4}$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Computing the residue in $z=0$ is highly simplified with the change of variable $s=\frac{1}{z}$, so that the function 'under investigation' is...

$\displaystyle f(s)= \frac{1 + 5\ s}{s\ (e^{s}-3)}$ (1)

It is clear that the residue of f(z) in z=0 is the coefficient of the first order of the Laurent expansion of f(s) in s=0, so that we first find the McLaurin expansion of $\displaystyle g(s)=\frac{1}{e^{s}-3}$. We obtain...

$\displaystyle g(s)= \frac{1}{e^{s}-3} \implies a_{0}= - \frac{1}{2}$

$\displaystyle g^{\ '}(s)= - \frac{e^{s}}{(e^{s}-3)^{2}} \implies a_{1}= - \frac{1}{4}$

$\displaystyle g^{\ ''}(s)= \frac{2\ e^{2\ s}}{(e^{s}-3)^{3}} + \frac{e^{s}}{(e^{s}-3)^{2}} \implies a_{2}=0$

... so that is...

$\displaystyle f(s) = \frac{1+5\ s}{s}\ \{-\frac{1}{2} - \frac{1}{4}\ s + 0\ s^{2} + \mathcal{O} (s^{3})\}$ (2)

... and from (1) we obtain easily that the residue of f(z) in z=0 is $r_{0}=- \frac{5}{4}$...

Kind regards

$\chi$ $\sigma$
thank you very much for the solution, but i have a question about it: we have the zeros of denominator which are of the form $z_k=(log3+2k\pi i)^{-1}$, and these points accumulate to zero when $k$ goes to $\infty$. Hence, i suppose, zero is not an isolated singularity for the function. So my question is: does it make sense to compute the residue in a point which is non an isolated singularity ?
 
pantboio said:
thank you very much for the solution, but i have a question about it: we have the zeros of denominator which are of the form $z_k=(log3+2k\pi i)^{-1}$, and these points accumulate to zero when $k$ goes to $\infty$. Hence, i suppose, zero is not an isolated singularity for the function. So my question is: does it make sense to compute the residue in a point which is non an isolated singularity ?

This new member [Italian nationality(Yes)...] is very able to propose 'very enbarassing questions'!... and that's good because nothing in Mathematics has to be consider as 'absolute true' and all must be subject to 'constructive critic'... If $z_{0}$ isn't an insulated singularities of $f(z)$ my provisional opinion is that the Laurent expansion of $f(z)$ 'around' $z=z_{0}$ exists [and also its residue...] but it doen't converge for any value of z. The problem is not a 'butterfly' because we have to extablish if in computing an integral like $\displaystyle \int_{c} f(z)\ dz$, where $z_{0}$ is inside c, the residue in $z_{0}$ has to be considered or not (Malthe)... Kind regards $\chi$ $\sigma$
 
This is indeed an evil question. You can certainly have a residue at an essential singularity, provided that it is isolated. But as the OP points out, the essential singularity at 0 in this example is not isolated. I believe that most authors only define a residue at an isolated singularity. That is what Ahlfors does in his classic text Complex analysis, and it is also the context in which residues are defined in the Wikipedia page on residues. So, unless you are using a text that defines residues differently, I would say that in this example the residue at 0 is not defined.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K