Smallest subfield of C that contains i

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
SUMMARY

The smallest subfield of the complex numbers $\mathbb{C}$ that contains the complex number $i$ is $\mathbb{Q}(i)$, which is defined as $\{a+bi \mid a,b \in \mathbb{Q}\}$. To establish that $\mathbb{Q}(i)$ is a field, it is necessary to demonstrate closure under addition and multiplication, the presence of additive and multiplicative identities, and the existence of additive and multiplicative inverses for all nonzero elements. Furthermore, any subfield of $\mathbb{C}$ that contains $i$ must also contain all rational numbers, confirming that $\mathbb{Q}(i)$ is indeed the smallest subfield containing $i$.

PREREQUISITES
  • Understanding of field theory and its properties
  • Familiarity with complex numbers and their operations
  • Knowledge of rational numbers and their properties
  • Ability to perform mathematical proofs involving closure properties
NEXT STEPS
  • Study the properties of fields, specifically in the context of $\mathbb{Q}(i)$
  • Learn about the construction of fields and field extensions
  • Explore the concept of closure in algebraic structures
  • Investigate the implications of subfields in complex analysis
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in field theory and complex number analysis will benefit from this discussion.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the following:
Determine the smallest subfield $\mathbb{K}$ of $\mathbb{C}$ that contains the complex number $i$.

The smallest subfield of $\mathbb{C}$ that contains the complex number $i$ is $\mathbb{K}=\mathbb{Q}(i)$, right?
Do we have to show that $\mathbb{Q}(i)=\{a+bi\mid a,b\in \mathbb{Q}\}$ is a field and then that it is the smallest subfield of $\mathbb{C}$ that contains $i$ ?

For the first part, we have to show that $\mathbb{Q}(i)$ is closed under addition and multiplication, contains both additive and multiplicative identities, contains additive inverses, and contains multiplicative inverses for all nonzero elements, right?

  • $\mathbb{Q}(i)$ is closed under addition :

    Let $x,y\in \mathbb{Q}(i)$, so $x=a_1+b_1i$ and $y=a_2+b_2i$. Then $x+y=(a_1+a_2)+(b_1+b_2)i\in \mathbb{Q}(i)$.
  • $\mathbb{Q}(i)$ is closed under multiplication :

    Let $x,y\in \mathbb{Q}(i)$, so $x=a_1+b_1i$ and $y=a_2+b_2i$. Then $x\cdot y=a_1b_1+a_1b_2i+a_2b_1i-a_2b_2=(a_1b_1-a_2b_2)+(a_1b_2+a_2b_1)i\in \mathbb{Q}(i)$.
  • $\mathbb{Q}(i)$ contains additive identity :

    The additive identity is $0 = 0+0i$.
  • $\mathbb{Q}(i)$ contains multiplicative identity :

    The multiplicative identity is $1 = 1+0i$.
  • $\mathbb{Q}(i)$ contains additive inverses

    Let $x\in \mathbb{Q}(i)$, so $x=a+bi$. Then the additive inverse is $-x=-a-bi$.
  • $\mathbb{Q}(i)$ contains multiplicative inverses for all nonzero elements

    Let $x\in \mathbb{Q}(i)$, so $x=a+bi$. Then the multiplicative inverse is $\frac{1}{x}=\frac{1}{a+bi}=\frac{a-bi}{(a+bi)(a-bi)}=\frac{a-bi}{a^2+b^2}=\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i\in \mathbb{Q}(i)$.

So, $\mathbb{Q}(i)$ is a field. For the second part:
Any field $F$ that contains $\mathbb Q$ and $i$ also contains $qi$ with $q$ rational, since $F$ is closed under products and $q$ and $i$ belong to $F$. Since $F$ contains every rational $p$ and every number of the form $qi$ it contains also their sum $p+qi$.

This proves $Q(i)\subseteq F$, which means that $\mathbb{Q}(i)$ is the smallest subfield of $\mathbb{C}$ that contains $i$. Is everything correct? Could I improve something? (Wondering)
 
Physics news on Phys.org
mathmari said:
For the second part:
Any field $F$ that contains $\mathbb Q$ and $i$ also contains $qi$ with $q$ rational, since $F$ is closed under products and $q$ and $i$ belong to $F$. Since $F$ contains every rational $p$ and every number of the form $qi$ it contains also their sum $p+qi$.

This proves $Q(i)\subseteq F$, which means that $\mathbb{Q}(i)$ is the smallest subfield of $\mathbb{C}$ that contains $i$.

Is everything correct? Could I improve something? (Wondering)

Hey mathmari! (Smile)

The first part looks fine to me, although we may want to mention for the multiplicative inverse that $a^2+b^2\ne 0$ so that the inverse is well defined for all $x\in \mathbb Q(i) \setminus \{0\}$.

As for the second part, it seems we're already assuming that $\mathbb Q$ must be contained in the sub field.
It's true alright, but why? (Wondering)
 
I like Serena said:
The first part looks fine to me, although we may want to mention for the multiplicative inverse that $a^2+b^2\ne 0$ so that the inverse is well defined for all $x\in \mathbb Q(i) \setminus \{0\}$.

Ah ok!

I like Serena said:
As for the second part, it seems we're already assuming that $\mathbb Q$ must be contained in the sub field.
It's true alright, but why? (Wondering)

So, we have to show that each subfield of the complex numbers contains every rational number, right?

Let $F$ be a subfield of $\mathbb{C}$.

Since $F$ is a field it must contain a distinguished element $\tilde{0}$, the additive identity. Since $F$ is a subfield of $\mathbb{C}$, we have that $F\subseteq \mathbb{C}$, so $\tilde{0}$ will be also the additive identity in $\mathbb{C}$. But this element is unique, therefore $\tilde{0} = 0$. Therefore $0 \in F$.

Since $F$ is a field it must contain a distinguished element $\tilde{1}$, the multiplicative identity. Since $F$ is a subfield of $\mathbb{C}$, we have that $F\subseteq \mathbb{C}$, so $\tilde{1}$ will be also the multiplicative identity in $\mathbb{C}$. But this element is unique, therefore $\tilde{1} = 1$. Therefore $1 \in F$.

Since $F$ is a field, it is closed under addition. We will show by induction that $\mathbb{N}\subseteq F$.
Base case: Since $1 \in F$ then we must have that $1 + 1 = 2 \in F$.
Inductive hypothesis: We suppose that $n\in F$.
Inductive step: Since $n\in F$ and $1\in F$ and since $F$ is closed under addition we get that $n+1\in F$.
So, we have that $n\in F$ for each $n\in \mathbb{N}$. This means that $\mathbb{N}\subseteq F$.

Since $F$ is a filed, it must contain all the additive inverses of all its elements. We have that $n\in \mathbb{N}\subseteq F$ so it must also $-n\in F$. So since $\mathbb{N} \subseteq F$ we must have $-\mathbb{N}=\mathbb{Z} \subseteq F$.

Since $F$ is a field, it must also contain all multiplicative inverses of its non-zero elements, therefore $\frac{1}{\mathbb{Z}}:=\left \{\frac{1}{n}\mid n\in \mathbb{Z}\right \}\subseteq F$.
Let $\frac{a}{b}$ be a rational number, with $a, b\in \mathbb{Z}$ and $b\neq 0$.
We have that $a\in \mathbb{Z}\subseteq F$ and $\frac{1}{b}\in \frac{1}{\mathbb{Z}}\subseteq F$.
Since $F$ is a field, it is closed under multiplication, we get that $\frac{a}{b}=a\cdot \frac{1}{b}\in F$.
Therefore, $F$ contains every rational number, i.e. $\mathbb{Q}\subseteq F$. Is everything correct? (Wondering)
 
Yep. (Nod)
 
I like Serena said:
Yep. (Nod)

Thank you! (Bow)
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
956
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
14
Views
3K
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K