SO(3) -- What is the advantage of knowing something is in a group?

  • Context: Undergrad 
  • Thread starter Thread starter Trying2Learn
  • Start date Start date
  • Tags Tags
    Group So(3)
Click For Summary
SUMMARY

The discussion centers on the significance of rotation matrices being members of the SO(3) group, highlighting that while properties like the inverse being the transpose and closure are essential, the group membership encapsulates broader implications, such as symmetry in natural processes. The non-Abelian nature of SO(3) indicates that the order of rotations affects outcomes, which is crucial for understanding 3D rotations. Additionally, the conversation touches on the relationship between groups and their associated algebras, specifically the Lie algebra so(3), emphasizing that all groups with differentiable operations have corresponding algebras.

PREREQUISITES
  • Understanding of rotation matrices and their properties
  • Familiarity with the SO(3) group and its significance in 3D rotations
  • Knowledge of Lie groups and Lie algebras, particularly so(3)
  • Basic concepts of differentiable manifolds and their properties
NEXT STEPS
  • Study the properties of SO(3) and its applications in physics and engineering
  • Explore the relationship between Lie groups and Lie algebras, focusing on the Lie algebra so(3)
  • Learn about non-Abelian groups and their implications in rotational dynamics
  • Investigate the role of differentiation in the context of Lie groups and algebras
USEFUL FOR

Mathematicians, physicists, and engineers interested in the geometric and algebraic properties of rotation matrices, as well as those studying the applications of Lie groups in theoretical physics and robotics.

Trying2Learn
Messages
375
Reaction score
57
TL;DR
What is the advantage of knowing something is in a group.
Good Morning!

I know that Rotation matrices are members of the SO(3) group.
I can prove some useful properties about it:
The inverse is the transpose;
Closure properties;

However, what is the advantage of asserting that a rotation matrix is a member of the SO(3) group, when all I really need is to know the inverse and closure properties?
 
Physics news on Phys.org
Trying2Learn said:
TL;DR Summary: What is the advantage of knowing something is in a group.

However, what is the advantage of asserting that a rotation matrix is a member of the SO(3) group, when all I really need is to know the inverse and closure properties?
##A\in \operatorname{SO}(3)## is definitely shorter than listing all properties. E.g., the group is a symmetry group of several processes in nature. This fact isn't obvious from ##A^{-1}=A^\tau.##
 
  • Like
Likes   Reactions: topsquark, malawi_glenn and vanhees71
Trying2Learn said:
However, what is the advantage of asserting that a rotation matrix is a member of the SO(3) group, when all I really need is to know the inverse and closure properties?
In addition to those, an important property of 3d rotations is that their order affects the result, i.e. it's a non-Abelian group.
 
  • Like
Likes   Reactions: topsquark, malawi_glenn and vanhees71
Trying2Learn said:
TL;DR Summary: What is the advantage of knowing something is in a group.

Good Morning!

I know that Rotation matrices are members of the SO(3) group.
I can prove some useful properties about it:
The inverse is the transpose;
Closure properties;

However, what is the advantage of asserting that a rotation matrix is a member of the SO(3) group, when all I really need is to know the inverse and closure properties?
But then you have a group? Why shouldn't one use the standard definitions of mathematics?
 
  • Like
Likes   Reactions: topsquark
fresh_42 said:
##A\in \operatorname{SO}(3)## is definitely shorter than listing all properties. E.g., the group is a symmetry group of several processes in nature. This fact isn't obvious from ##A^{-1}=A^\tau.##
I like your response... May I follow up with one more?

I know the properties of SO(3)
I know there is an associated algebra so(3)

Do all Groups have an associated algebra?
What is the meaning of this? (I am sorry, I do not know how to be more specific)

For example, if R is a rotation matrix, Rt is the transpose and R-dot is the time derivative, then we obtain

omega-skew = Rt * R-dot

Is it expected that all groups have an associated algebra?
Is there a way I could have anticipated the form of the associated algebra?

Please (if I may) do not go too far into abstract algebra.
 
vanhees71 said:
But then you have a group? Why shouldn't one use the standard definitions of mathematics?
Also for you: followup below (if you have the time)
 
  • Like
Likes   Reactions: topsquark
Trying2Learn said:
I like your response... May I follow up with one more?

I know the properties of SO(3)
I know there is an associated algebra so(3)

Do all Groups have an associated algebra?
All groups for which multiplication and inversion are differentiable.
Trying2Learn said:
What is the meaning of this? (I am sorry, I do not know how to be more specific)
Meaning of what?

The idea from ##\operatorname{SO}(3)## to ##\mathfrak{so}(3)## is the same as from a surface (group) to its tangent space (algebra). Plus a bit of mathematics, but basically that.

The symmetry group of natural processes? Imagine looking in a mirror. It swaps left and right but not up and down. But it is the same whether you rotate yourself or not.

Trying2Learn said:
For example, if R is a rotation matrix, Rt is the transpose and R-dot is the time derivative, then we obtain

omega-skew = Rt * R-dot
I'm afraid I don't know what you mean.
Here is explained how you can type formulas on PF: https://www.physicsforums.com/help/latexhelp/

Trying2Learn said:
Is it expected that all groups have an associated algebra?
See above. All groups which can be considered a Riemannian manifold, or shortly: with differentiable multiplication and inversion.

Trying2Learn said:
Is there a way I could have anticipated the form of the associated algebra?
##\mathfrak{so}(3)## is a Lie algebra. Its multiplication is defined by ##(X,Y)\longmapsto [X,Y]=X\cdot Y- Y\cdot X## which produces a Lie algebra. The associativity fails here since the defining property is ##X^\tau=-X## and ##(XY)^\tau=Y^\tau X^\tau=YX\neq -(XY)##. But we have the Leibniz rule from the differentiation as property ##[X,[Y,Z]]=[Y,[X,Z]]+[[X,Y],Z].##

It is all about differentiation with all its consequences. The most important one is, that differentiation is a local property. It happens at a point and makes a statement about points nearby. Here (at the beginning) is an example of a local Lie group:
https://www.physicsforums.com/insights/journey-manifold-su2mathbbc-part/

It is roughly differentiation that transforms group elements to algebra elements: chose a path in the group ##t \longmapsto X(t),## differentiate it at ##t=0## and get the tangent vector in the algebra. Consequently, we have to solve a differential equation if we want to go from tangent space to group. And as usual, when it comes to solving differential equations, we let the exponential function do the work. The details are a bit complicated. Maybe you could read a little bit more from the insight article I just linked to, or the others I have written. Many about Lie theory.

If I am asked to explain it without differentiation along paths in the group then I would say:

  • ##1\in \operatorname{SO}(3)## turns into the origin of the vector space ##0\in \mathfrak{so}(3)##
  • inversion in the group becomes a minus sign in the algebra
  • transposition remains the same
  • multiplication in the group becomes addition in the algebra
  • determinant becomes trace
So ##X^{-1}=X^\tau\, , \,X\cdot X^\tau=1## gets ##-X=X^\tau\, , \,X+X^\tau=0## and ##\det X = 1## gets ##\operatorname{trace}X=0.##
 
Last edited:
  • Like
Likes   Reactions: vanhees71, dextercioby and topsquark
Thank you, everyone... again. I learn so much here!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 26 ·
Replies
26
Views
922
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 0 ·
Replies
0
Views
4K