Solid diprotium saturated vapour density

  • Context: Undergrad 
  • Thread starter Thread starter snorkack
  • Start date Start date
  • Tags Tags
    Density Solid Vapour
Click For Summary
SUMMARY

The equilibrium vapour density of bulk solid diprotium at 2.7 K is approximately 10-13 mm Hg, based on the vapor pressure equation log P (mm Hg) = A + B/T + CT, where A = 4.62, B = -47.02, and C = 0.02023. The discussion highlights that the density of saturated vapour decreases exponentially with temperature, and emphasizes the need for precise measurements at low temperatures. Various references, including NIST publications and hydrogen property resources, are provided for further exploration of solid hydrogen properties.

PREREQUISITES
  • Understanding of vapor pressure equations, specifically the Antoine equation.
  • Knowledge of thermodynamic principles related to phase changes at low temperatures.
  • Familiarity with solid hydrogen properties and its isotopes.
  • Basic grasp of molecular cloud conditions and their relevance to hydrogen states.
NEXT STEPS
  • Research the Antoine equation and its application to low-temperature vapor pressures.
  • Investigate the properties of solid hydrogen and its isotopes, particularly diprotium.
  • Explore the conditions in molecular clouds and their impact on hydrogen states.
  • Examine experimental methods for measuring vapor pressures at cryogenic temperatures.
USEFUL FOR

Researchers in cryogenics, astrophysicists studying molecular clouds, and chemists focusing on hydrogen properties will benefit from this discussion.

snorkack
Messages
2,388
Reaction score
536
What precisely is the equilibrium vapour density of bulk solid diprotium surface now, at 2,7 K?

The density of the world falls with some power of temperature (which one?). The density of saturated vapour falls exponentially.
At which temperature shall the world saturate with respect to bulk solid diprotium?
 
Astronomy news on Phys.org
What has your research brought you so far ? Any reason you don't like hydrogen and focus on the isotope that's overwhelmingly dominant anyway ?
Google is your friend
http://www.tvu.com/PEngPropsSH2Web.htm
https://www1.eere.energy.gov/hydrogenandfuelcells/tech_validation/pdfs/fcm01r0.pdf
https://en.wikipedia.org/wiki/Solid_hydrogen
https://nvlpubs.nist.gov/nistpubs/jres/47/jresv47n2p63_a1b.pdf

Can you give some more context ? What are you trying to find ? What, for example is the reason you want it 'precisely' (without giving a definition) ? In an age of global warming it might be good enough to use approximate values from physical property approximation expressions and equations of state :rolleyes: ?

Anyway, why look at solid hydrogen when first the oceans freeze, then O2 and N2 condense etc etc ?
snorkack said:
The density of the world falls with some power of temperature (which one?)
The temperature of the earth, of course :wink:
But if the 'which' refers to the power, then I'd start with 1 (see iron/nickel or rock)
 
Last edited:
  • Like
Likes   Reactions: berkeman
BvU said:
What has your research brought you so far ?
Tables tend to break off at temperatures far above 2,7 K.
BvU said:
That one was useful.
Vapor pressure of the solid (20.4 K equilibrium hydrogen) follows the equation

log P (mm Hg) = A + B/T + CT,

where A = 4.62, B = -47.02, C = 0.02023, although the vapor pressures for a mixtures closer to normal hydrogen are somewhat lower [3]
For 2,7 K, I get log P at about -13.
BvU said:
Can you give some more context ? What are you trying to find ? What, for example is the reason you want it 'precisely' (without giving a definition) ? In an age of global warming it might be good enough to use approximate values from physical property approximation expressions and equations of state :rolleyes: ?

Anyway, why look at solid hydrogen when first the oceans freeze, then O2 and N2 condense etc etc ?
The temperature of the earth, of course :wink:
But if the 'which' refers to the power, then I'd start with 1 (see iron/nickel or rock)
Um. Ices are already dust.
Hydrogen and helium are as yet gases, even in molecular clouds.
How does that present equilibrium vapour pressure, of 10-13 mm Hg, compare with pressure in molecular clouds?
 
Dunno, but outer space is different from 'the world' . With a few H atoms per m3 there's no chance of solid formation.

snorkack said:
For 2,7 K, I get log P at about -13
wouldn't trust those numbers: with those values in the Antoine eqn I can't even reproduce the pressures they mention ! and 2.7 K is extrapolating way out...

snorkack said:
compare with pressure in molecular clouds
Those guys have funny 'standard units' P/kB of 104 to 107 cm-3 K, it seems (nice exercise: convert to mm Hg -- I get 10-15 to 10-12 , so perhaps a case of oops! -- but I may well be mistaken. It's past bedtime here )

But then again, when you google 'interstellar ice' or 'volatiles' ... :rolleyes:

Let me know if and how you find inroads for this diprotonium ice !
 
Last edited:
BvU said:
wouldn't trust those numbers: with those values in the Antoine eqn I can't even reproduce the pressures they mention ! and 22.7 K is extrapolating way out...
Sure, but I could not find actual measurements for 2,7 K.
Do you expect that the pressure would be subject to some sort of Antoine equation?
 
Here's another (table 6) with eqn ##A + B/T + B'\ln T##
Perhaps you can sort out he references mentioned here (section 2.2.30) ; data are on P 6-288
 
BvU said:
Here's another (table 6) with eqn ##A + B/T + B'\ln T##
Page 17. For eH2, it gives A as 2,5 (for Torr), B as -85,3, B' as 2,9.
For 2,7 K, that would mean B/T=-31,6, ln T=1, B´/ln T=2,9
then ln Q=2,5-31,6+2,9=5,4-31,6=-26,2
log Q=ln Q/2,303=-11,5

Thus, two sources give P as 10-13 and 10-11,5 mm Hg respectively. Appreciable divergence, but not unreasonably big seeing how these are extrapolated out of the measurable range. Same ballpark.
How do these numbers - 10-13...10-11 mm Hg - compare to the present pressures in molecular clouds?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 109 ·
4
Replies
109
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 83 ·
3
Replies
83
Views
8K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K