Hello all... I have a problem which I have been grappling with for some time. Let b be a positive integer and consider the equation z = x + y + b where x,y,z are variables. Suppose the integers {1,2,...4b+5} are partitioned in two classes. I wish to show that at least one of the classes contains a solution to the equation.(adsbygoogle = window.adsbygoogle || []).push({});

I have tried using induction on b. The case b = 1 has been solved entirely by me. But I cannot understand how to use the induction hypothesis to prove the result. The more I think of it, the more I feel that a different approach to the problem is needed, but I cant figure out what. It is sort of a special case of a research problem, which has been solved in a more general way. I have little experience of doing research on my own, and so will be glad if anyone can offer me any advice or hints. Thanks.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Solutions of a particular equation

Loading...

Similar Threads - Solutions particular equation | Date |
---|---|

I Solutions to equations involving linear transformations | Mar 6, 2018 |

I Non-Hermitian wavefunctions and their solutions | Jan 18, 2018 |

How to find group types for a particular order? | Sep 22, 2015 |

**Physics Forums - The Fusion of Science and Community**