MHB Solutions of DE System & 2nd Order Differential Equation

WMDhamnekar
MHB
Messages
376
Reaction score
28
Hello,
$\vec{x'}=\small\begin{pmatrix}1&2\\3&2\end{pmatrix}\vec{x}+t\small\begin{pmatrix}2\\-4\end{pmatrix}$

Now i got the solution to this differential equation system as

$\vec{x}(t)=c_1e^{-t}\small\begin{pmatrix}-1\\1\end{pmatrix}$+$c_2e^{4t}\small\begin{pmatrix}2\\3\end{pmatrix}$+$t\small\begin{pmatrix}3\\\frac{-5}{2}\end{pmatrix}$+$\small\begin{pmatrix}-2.75\\2.875\end{pmatrix}$

Now i converted this differential equation system into ordinary differential equation $y''-3y'-4y+12t-2=0$

I got solution to this DE as $y=C_1e^{-x}+C_2e^{4x}+3t-\frac12$.

Now my question why there is diference in these two solutions?
 
Physics news on Phys.org
Dhamnekar Winod said:
Hello,
$\vec{x'}=\small\begin{pmatrix}1&2\\3&2\end{pmatrix}\vec{x}+t\small\begin{pmatrix}2\\-4\end{pmatrix}$

Now i got the solution to this differential equation system as

$\vec{x}(t)=c_1e^{-t}\small\begin{pmatrix}-1\\1\end{pmatrix}$+$c_2e^{4t}\small\begin{pmatrix}2\\3\end{pmatrix}$+$t\small\begin{pmatrix}3\\\frac{-5}{2}\end{pmatrix}$+$\small\begin{pmatrix}-2.75\\2.875\end{pmatrix}$

Now i converted this differential equation system into ordinary differential equation $y''-3y'-4y+12t-2=0$

I got solution to this DE as $y=C_1e^{-x}+C_2e^{4x}+3t-\frac12$.

Now my question why there is diference in these two solutions?

Hi Dhamnekar Winod, welcome to MHB! ;)

Your solution contains $x$ on the right hand side. I presume it should be $t$?
Either way, if I feed the latter equation to Wolfram|Alpha, I get:
$$y(t)=c_1e^{-t}+c_2e^{4t}+3t-\frac{11}{4}$$
So:
  • It seems to be the solution for $x(t)$ rather than $y(t)$.
  • Your equation is correct, although for $x(t)$ rather than $y(t)$.
  • There is a minor arithmetic mistake somewhere in your solution.
 
Hello, The derivative of $x_1=C_1e^{-t}+C_23e^{4t}-2.5t+2.875$in the differential equation system.But in the second case,it is different Why?
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 35 ·
2
Replies
35
Views
6K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K