MHB Solutions of the given linear programming problem

Click For Summary
The discussion revolves around solving a linear programming problem using the simplex method and the Two-Phase method. The user proposes a solution indicating infinite solutions represented by the equation (x,y,z,w)=(1-m, 2+0.4m, 0, 0.2m) with a minimum value of 8. Another participant confirms the correctness of this solution by demonstrating that the inequalities lead to a minimum condition satisfied by setting z=0. The conversation concludes with mutual acknowledgment of the solution's validity.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hello! :o
Given the following linear programming problem
$$\min(2x + 3y + 6z + 4w)$$
$$x+2y+3z+w \geq 5$$
$$x+y+2z+3w \geq 3$$
$$x,y,z,w \geq 0$$
I am asked to find all the solutions using the simplex method.

To solve this problem we use the Two-Phase method, don't we?
Then I found that there are infinite many solutions, $(x,y,z,w)=(1-m, 2+0.4m, 0, 0.2m), 0≤m≤1$ with $min=8$.
Could you tell me if this is right?
 
Mathematics news on Phys.org
mathmari said:
Hello! :o
Given the following linear programming problem
$$\min(2x + 3y + 6z + 4w)$$
$$x+2y+3z+w \geq 5$$
$$x+y+2z+3w \geq 3$$
$$x,y,z,w \geq 0$$
I am asked to find all the solutions using the simplex method.

To solve this problem we use the Two-Phase method, don't we?
Then I found that there are infinite many solutions, $(x,y,z,w)=(1-m, 2+0.4m, 0, 0.2m), 0≤m≤1$ with $min=8$.
Could you tell me if this is right?
Your answer is certainly correct, because if you add the two inequalities you get $2x + 3y + 5z + 4w \geqslant 5+3=8$. Therefore $2x + 3y + 6z + 4w \geqslant 8+z$, which is minimised by taking $z=0$. Your solutions, with $z=0$, clearly satisfy all the given conditions, so they must be right.
 
mathmari said:
Hello! :o
Given the following linear programming problem
$$\min(2x + 3y + 6z + 4w)$$
$$x+2y+3z+w \geq 5$$
$$x+y+2z+3w \geq 3$$
$$x,y,z,w \geq 0$$
I am asked to find all the solutions using the simplex method.

To solve this problem we use the Two-Phase method, don't we?
Then I found that there are infinite many solutions, $(x,y,z,w)=(1-m, 2+0.4m, 0, 0.2m), 0≤m≤1$ with $min=8$.
Could you tell me if this is right?

Looks good! ;)

EDIT: Aargh, overtaken by Opalg.
 
Opalg said:
Your answer is certainly correct, because if you add the two inequalities you get $2x + 3y + 5z + 4w \geqslant 5+3=8$. Therefore $2x + 3y + 6z + 4w \geqslant 8+z$, which is minimised by taking $z=0$. Your solutions, with $z=0$, clearly satisfy all the given conditions, so they must be right.

Great! Thank you for your answer! :o

- - - Updated - - -

I like Serena said:
Looks good! ;)

EDIT: Aargh, overtaken by Opalg.

Nice! Thank you! :o
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 44 ·
2
Replies
44
Views
5K
Replies
17
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
907
  • · Replies 13 ·
Replies
13
Views
6K
Replies
3
Views
1K
Replies
5
Views
2K