Solve 8^x+8^(-x)=? When 4^x+4^(-x)=8

  • Context: MHB 
  • Thread starter Thread starter Monoxdifly
  • Start date Start date
Click For Summary
SUMMARY

The equation $$4^x + 4^{-x} = 8$$ leads to the inquiry of the value of $$8^x + 8^{-x}$$. By substituting $$y = 2^x$$, the equation transforms into $$y^2 + \frac{1}{y^2} = 8$$, allowing the calculation of $$y^3 + \frac{1}{y^3}$$. The derived result is $$y^3 + \frac{1}{y^3} = 7\sqrt{10}$$, which does not match any of the provided answer options (14, 15, 16, 17, 18). This discrepancy suggests a possible error in the problem statement or answer choices.

PREREQUISITES
  • Understanding of exponential functions and their properties
  • Familiarity with algebraic manipulation of equations
  • Knowledge of substitution methods in solving equations
  • Basic comprehension of cube and square identities
NEXT STEPS
  • Explore the derivation of $$y^3 + \frac{1}{y^3}$$ from $$y + \frac{1}{y}$$
  • Study the implications of complex roots in quadratic equations
  • Investigate the use of Wolfram Alpha for verifying mathematical solutions
  • Learn about potential errors in problem statements and how to identify them
USEFUL FOR

Mathematics students, educators, and anyone interested in solving exponential equations and verifying mathematical proofs.

Monoxdifly
MHB
Messages
288
Reaction score
0
If $$4^x+4^{-x}=8$$, then $$8^x+8^{-x}=?$$
A. 14
B. 15
C. 16
D. 17
E. 18

What should I do? I tried substituting $$y = 4^x$$ but it didn't help since the quadratic equation formed didn't have real roots.
 
Mathematics news on Phys.org
Monoxdifly said:
If $$4^x+4^{-x}=8$$, then $$8^x+8^{-x}=?$$
A. 14
B. 15
C. 16
D. 17
E. 18

What should I do? I tried substituting $$y = 4^x$$ but it didn't help since the quadratic equation formed didn't have real roots.

we know $4=2^2$ and $8= 2^3$ so put $2^x = y$
we get $y^2 + \frac{1}{y^2} = 8\cdots(1)$
we need to find $y^3+ \frac{1}{y^3}$
from (1) we get
$(y + \frac{1}{y})^2 -2 = 8$
or $(y + \frac{1}{y}) = \sqrt{10}$

now you should be able to proceed.
 
kaliprasad said:
we know $4=2^2$ and $8= 2^3$ so put $2^x = y$
we get $y^2 + \frac{1}{y^2} = 8\cdots(1)$
we need to find $y^3+ \frac{1}{y^3}$
from (1) we get
$(y + \frac{1}{y})^2 -2 = 8$
or $(y + \frac{1}{y}) = \sqrt{10}$

now you should be able to proceed.

Well...
$$(y + \frac{1}{y})^3 = (\sqrt{10})^3$$
$$y^3+3y^2(\frac{1}{y})+3y(\frac{1}{y^2})+\frac{1}{y^3}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3y+3(\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3(y+\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3\sqrt{10}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}=7\sqrt{10}$$
Not in the options...
 
Monoxdifly said:
Well...
$$(y + \frac{1}{y})^3 = (\sqrt{10})^3$$
$$y^3+3y^2(\frac{1}{y})+3y(\frac{1}{y^2})+\frac{1}{y^3}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3y+3(\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3(y+\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3\sqrt{10}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}=7\sqrt{10}$$
Not in the options...

Wolfram confirms that your solution is correct.
So it appears there is either a typo in the problem statement, or the correct answer is indeed not listed.
 
Ah, okay then. Thanks to both of you.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K