MHB Solve 8^x+8^(-x)=? When 4^x+4^(-x)=8

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
Click For Summary
The discussion revolves around solving the equation 8^x + 8^(-x) given that 4^x + 4^(-x) = 8. Participants attempted substitutions, particularly using y = 4^x, but faced challenges with real roots in the resulting quadratic equation. By expressing the terms in base 2, they derived that (y + 1/y) = √10, leading to the calculation of y^3 + 1/y^3. Ultimately, the computed result of 7√10 does not match any provided answer choices, suggesting a possible typo in the problem statement or that the correct answer is missing.
Monoxdifly
MHB
Messages
288
Reaction score
0
If $$4^x+4^{-x}=8$$, then $$8^x+8^{-x}=?$$
A. 14
B. 15
C. 16
D. 17
E. 18

What should I do? I tried substituting $$y = 4^x$$ but it didn't help since the quadratic equation formed didn't have real roots.
 
Mathematics news on Phys.org
Monoxdifly said:
If $$4^x+4^{-x}=8$$, then $$8^x+8^{-x}=?$$
A. 14
B. 15
C. 16
D. 17
E. 18

What should I do? I tried substituting $$y = 4^x$$ but it didn't help since the quadratic equation formed didn't have real roots.

we know $4=2^2$ and $8= 2^3$ so put $2^x = y$
we get $y^2 + \frac{1}{y^2} = 8\cdots(1)$
we need to find $y^3+ \frac{1}{y^3}$
from (1) we get
$(y + \frac{1}{y})^2 -2 = 8$
or $(y + \frac{1}{y}) = \sqrt{10}$

now you should be able to proceed.
 
kaliprasad said:
we know $4=2^2$ and $8= 2^3$ so put $2^x = y$
we get $y^2 + \frac{1}{y^2} = 8\cdots(1)$
we need to find $y^3+ \frac{1}{y^3}$
from (1) we get
$(y + \frac{1}{y})^2 -2 = 8$
or $(y + \frac{1}{y}) = \sqrt{10}$

now you should be able to proceed.

Well...
$$(y + \frac{1}{y})^3 = (\sqrt{10})^3$$
$$y^3+3y^2(\frac{1}{y})+3y(\frac{1}{y^2})+\frac{1}{y^3}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3y+3(\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3(y+\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3\sqrt{10}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}=7\sqrt{10}$$
Not in the options...
 
Monoxdifly said:
Well...
$$(y + \frac{1}{y})^3 = (\sqrt{10})^3$$
$$y^3+3y^2(\frac{1}{y})+3y(\frac{1}{y^2})+\frac{1}{y^3}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3y+3(\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3(y+\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3\sqrt{10}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}=7\sqrt{10}$$
Not in the options...

Wolfram confirms that your solution is correct.
So it appears there is either a typo in the problem statement, or the correct answer is indeed not listed.
 
Ah, okay then. Thanks to both of you.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K