MHB Solve 8^x+8^(-x)=? When 4^x+4^(-x)=8

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
AI Thread Summary
The discussion revolves around solving the equation 8^x + 8^(-x) given that 4^x + 4^(-x) = 8. Participants attempted substitutions, particularly using y = 4^x, but faced challenges with real roots in the resulting quadratic equation. By expressing the terms in base 2, they derived that (y + 1/y) = √10, leading to the calculation of y^3 + 1/y^3. Ultimately, the computed result of 7√10 does not match any provided answer choices, suggesting a possible typo in the problem statement or that the correct answer is missing.
Monoxdifly
MHB
Messages
288
Reaction score
0
If $$4^x+4^{-x}=8$$, then $$8^x+8^{-x}=?$$
A. 14
B. 15
C. 16
D. 17
E. 18

What should I do? I tried substituting $$y = 4^x$$ but it didn't help since the quadratic equation formed didn't have real roots.
 
Mathematics news on Phys.org
Monoxdifly said:
If $$4^x+4^{-x}=8$$, then $$8^x+8^{-x}=?$$
A. 14
B. 15
C. 16
D. 17
E. 18

What should I do? I tried substituting $$y = 4^x$$ but it didn't help since the quadratic equation formed didn't have real roots.

we know $4=2^2$ and $8= 2^3$ so put $2^x = y$
we get $y^2 + \frac{1}{y^2} = 8\cdots(1)$
we need to find $y^3+ \frac{1}{y^3}$
from (1) we get
$(y + \frac{1}{y})^2 -2 = 8$
or $(y + \frac{1}{y}) = \sqrt{10}$

now you should be able to proceed.
 
kaliprasad said:
we know $4=2^2$ and $8= 2^3$ so put $2^x = y$
we get $y^2 + \frac{1}{y^2} = 8\cdots(1)$
we need to find $y^3+ \frac{1}{y^3}$
from (1) we get
$(y + \frac{1}{y})^2 -2 = 8$
or $(y + \frac{1}{y}) = \sqrt{10}$

now you should be able to proceed.

Well...
$$(y + \frac{1}{y})^3 = (\sqrt{10})^3$$
$$y^3+3y^2(\frac{1}{y})+3y(\frac{1}{y^2})+\frac{1}{y^3}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3y+3(\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3(y+\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3\sqrt{10}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}=7\sqrt{10}$$
Not in the options...
 
Monoxdifly said:
Well...
$$(y + \frac{1}{y})^3 = (\sqrt{10})^3$$
$$y^3+3y^2(\frac{1}{y})+3y(\frac{1}{y^2})+\frac{1}{y^3}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3y+3(\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3(y+\frac1y)=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}+3\sqrt{10}=10\sqrt{10}$$
$$y^3+\frac{1}{y^3}=7\sqrt{10}$$
Not in the options...

Wolfram confirms that your solution is correct.
So it appears there is either a typo in the problem statement, or the correct answer is indeed not listed.
 
Ah, okay then. Thanks to both of you.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
7
Views
2K
Replies
8
Views
1K
Replies
24
Views
3K
Replies
2
Views
1K
Replies
7
Views
3K
Replies
2
Views
1K
Replies
1
Views
1K
Back
Top