MHB Solve Exponent Challenge: Prove Equality

Click For Summary
The discussion focuses on proving the equality of two complex expressions involving cube roots. The key simplification involves substituting specific values for the cube roots of integers, leading to a reduction of the original equation to a simpler form. By demonstrating that both sides of the equation can be expressed in terms of the same variables, the proof is established. The final step confirms that the simplified expressions on both sides are equal, validating the original equation. The collaborative effort highlights the effectiveness of algebraic manipulation in solving exponent challenges.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $$\left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 6+847^{\frac{1}{3}}+539^{\frac{1}{3}} \right)^{\frac{1}{3}}=\left( 4+245^{\frac{1}{3}}+175^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 8+1859^{\frac{1}{3}}+1573^{\frac{1}{3}} \right)^{\frac{1}{3}}$$
 
Mathematics news on Phys.org
[sp]Let $\alpha = \sqrt[3]5,\ \beta = \sqrt[3]7,\ \gamma = \sqrt[3]11,\ \delta = \sqrt[3]13,$ and let $\epsilon = \sqrt[3]{1/3}.$ Then $845 = 5\times13^2$ and $325 = 5^2\times 13$. So $$( 6+845^{1/3}+325^{1/3})^{1/3} = ( 6+ \alpha\delta^2 + \alpha^2\delta)^{1/3} = \epsilon( 13+ 3\alpha\delta^2 + 3\alpha^2\delta + 5)^{1/3} = \epsilon( (\delta+ \alpha)^3)^{1/3} = \epsilon(\delta+ \alpha).$$ In exactly the same way, $( 6+847^{1/3}+539^{1/3})^{1/3} = \epsilon(\gamma+ \beta)$, $( 4+245^{1/3}+175^{1/3})^{1/3} = \epsilon(\beta+ \alpha)$ and $ (8+1859^{1/3}+1573^{1/3} )^{1/3} = \epsilon(\delta+ \gamma)$. Thus the problem reduces to showing that $\epsilon(\delta+ \alpha) + \epsilon(\gamma+ \beta) = \epsilon(\beta+ \alpha) + \epsilon(\delta+ \gamma)$, which is obviously true.[/sp]
 
anemone said:
Prove that $$\left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 6+847^{\frac{1}{3}}+539^{\frac{1}{3}} \right)^{\frac{1}{3}}=\left( 4+245^{\frac{1}{3}}+175^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 8+1859^{\frac{1}{3}}+1573^{\frac{1}{3}} \right)^{\frac{1}{3}}$$

Thank you Opalg for participating and the nice approach!:)

My solution:
Notice that
$$\left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}$$ can be rewritten as the sum of two cube roots, i.e.
$$
( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}=a^{\frac{1}{3}}+b^{\frac{1}{3}}$$, $a, b \in Z$

Raise both sides of the equation to the third power and by comparing the bases of the two exponents, we get:

$$
( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}=(a^{\frac{1}{3}}+b^{\frac{1}{3}})^{\frac{1}{3}}$$

$$
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=a+b+3(ab)^{ \frac{1}{3}}(a^{\frac{1}{3}}+b^{\frac{1}{3}})$$

$$
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=a+b+(3b)^{ \frac{1}{3}}(3a)^{ \frac{2}{3}}+(3a)^{ \frac{1}{3}}(3b)^{ \frac{2}{3}}$$

We see that $$a=\dfrac{13}{3}$$, $$b=\dfrac{5}{3}$$ and hence

$$\left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{13}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{5}{3} \right)^{ \frac{1}{3}}$$

Similarly,

$$\left( 6+847^{\frac{1}{3}}+539^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 6+7^{\frac{1}{3}}11^{\frac{2}{3}} +11^{\frac{2}{3}}7^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{11}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{7}{3} \right)^{ \frac{1}{3}}$$

$$\left( 4+245^{\frac{1}{3}}+175^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 4+5^{\frac{1}{3}}7^{\frac{2}{3}} +5^{\frac{2}{3}}7^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{7}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{5}{3} \right)^{ \frac{1}{3}}$$

$$\left( 8+1859^{\frac{1}{3}}+1573^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 4+5^{\frac{1}{3}}7^{\frac{2}{3}} +5^{\frac{2}{3}}7^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{13}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{11}{3} \right)^{ \frac{1}{3}}$$

Therefore the required result follows.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K