Solve Exponent Challenge: Prove Equality

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Exponent
Click For Summary
SUMMARY

The equality $$\left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 6+847^{\frac{1}{3}}+539^{\frac{1}{3}} \right)^{\frac{1}{3}}=\left( 4+245^{\frac{1}{3}}+175^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 8+1859^{\frac{1}{3}}+1573^{\frac{1}{3}} \right)^{\frac{1}{3}} is proven using specific cube root identities. By defining $\alpha = \sqrt[3]{5}$, $\beta = \sqrt[3]{7}$, $\gamma = \sqrt[3]{11}$, $\delta = \sqrt[3]{13}$, and $\epsilon = \sqrt[3]{1/3}$, the expressions simplify to $\epsilon(\delta + \alpha)$ and $\epsilon(\gamma + \beta)$, confirming the equality holds. The approach effectively reduces complex cube roots to manageable algebraic forms.

PREREQUISITES
  • Understanding of cube roots and their properties
  • Familiarity with algebraic manipulation of expressions
  • Knowledge of basic number theory concepts
  • Ability to work with radicals and simplify expressions
NEXT STEPS
  • Study advanced algebraic identities involving cube roots
  • Explore the properties of radicals in number theory
  • Learn about symmetric sums and their applications in algebra
  • Investigate the use of substitutions in simplifying complex expressions
USEFUL FOR

Mathematicians, students studying algebra, educators teaching number theory, and anyone interested in solving complex mathematical equations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $$\left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 6+847^{\frac{1}{3}}+539^{\frac{1}{3}} \right)^{\frac{1}{3}}=\left( 4+245^{\frac{1}{3}}+175^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 8+1859^{\frac{1}{3}}+1573^{\frac{1}{3}} \right)^{\frac{1}{3}}$$
 
Mathematics news on Phys.org
[sp]Let $\alpha = \sqrt[3]5,\ \beta = \sqrt[3]7,\ \gamma = \sqrt[3]11,\ \delta = \sqrt[3]13,$ and let $\epsilon = \sqrt[3]{1/3}.$ Then $845 = 5\times13^2$ and $325 = 5^2\times 13$. So $$( 6+845^{1/3}+325^{1/3})^{1/3} = ( 6+ \alpha\delta^2 + \alpha^2\delta)^{1/3} = \epsilon( 13+ 3\alpha\delta^2 + 3\alpha^2\delta + 5)^{1/3} = \epsilon( (\delta+ \alpha)^3)^{1/3} = \epsilon(\delta+ \alpha).$$ In exactly the same way, $( 6+847^{1/3}+539^{1/3})^{1/3} = \epsilon(\gamma+ \beta)$, $( 4+245^{1/3}+175^{1/3})^{1/3} = \epsilon(\beta+ \alpha)$ and $ (8+1859^{1/3}+1573^{1/3} )^{1/3} = \epsilon(\delta+ \gamma)$. Thus the problem reduces to showing that $\epsilon(\delta+ \alpha) + \epsilon(\gamma+ \beta) = \epsilon(\beta+ \alpha) + \epsilon(\delta+ \gamma)$, which is obviously true.[/sp]
 
anemone said:
Prove that $$\left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 6+847^{\frac{1}{3}}+539^{\frac{1}{3}} \right)^{\frac{1}{3}}=\left( 4+245^{\frac{1}{3}}+175^{\frac{1}{3}} \right)^{\frac{1}{3}}+\left( 8+1859^{\frac{1}{3}}+1573^{\frac{1}{3}} \right)^{\frac{1}{3}}$$

Thank you Opalg for participating and the nice approach!:)

My solution:
Notice that
$$\left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}$$ can be rewritten as the sum of two cube roots, i.e.
$$
( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}=a^{\frac{1}{3}}+b^{\frac{1}{3}}$$, $a, b \in Z$

Raise both sides of the equation to the third power and by comparing the bases of the two exponents, we get:

$$
( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}=(a^{\frac{1}{3}}+b^{\frac{1}{3}})^{\frac{1}{3}}$$

$$
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=a+b+3(ab)^{ \frac{1}{3}}(a^{\frac{1}{3}}+b^{\frac{1}{3}})$$

$$
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=a+b+(3b)^{ \frac{1}{3}}(3a)^{ \frac{2}{3}}+(3a)^{ \frac{1}{3}}(3b)^{ \frac{2}{3}}$$

We see that $$a=\dfrac{13}{3}$$, $$b=\dfrac{5}{3}$$ and hence

$$\left( 6+845^{\frac{1}{3}}+325^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 6+5^{\frac{1}{3}}13^{\frac{2}{3}} +5^{\frac{2}{3}}13^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{13}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{5}{3} \right)^{ \frac{1}{3}}$$

Similarly,

$$\left( 6+847^{\frac{1}{3}}+539^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 6+7^{\frac{1}{3}}11^{\frac{2}{3}} +11^{\frac{2}{3}}7^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{11}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{7}{3} \right)^{ \frac{1}{3}}$$

$$\left( 4+245^{\frac{1}{3}}+175^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 4+5^{\frac{1}{3}}7^{\frac{2}{3}} +5^{\frac{2}{3}}7^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{7}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{5}{3} \right)^{ \frac{1}{3}}$$

$$\left( 8+1859^{\frac{1}{3}}+1573^{\frac{1}{3}} \right)^{\frac{1}{3}}=( 4+5^{\frac{1}{3}}7^{\frac{2}{3}} +5^{\frac{2}{3}}7^{\frac{1}{3}} )^{\frac{1}{3}}=\left(\dfrac{13}{3} \right)^{ \frac{1}{3}}+ \left(\dfrac{11}{3} \right)^{ \frac{1}{3}}$$

Therefore the required result follows.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K