MHB Solve Factoring Problem: (x+y)^2+2(X+Y)+1

  • Thread starter Thread starter caligari
  • Start date Start date
  • Tags Tags
    Factoring
Click For Summary
The expression (x+y)^2 + 2(x+y) + 1 can be factored as (x+y+1)^2. By substituting u for (x+y), the equation simplifies to u^2 + 2u + 1, which is recognized as the square of (u+1). The confusion arises from the calculator's steps, particularly the disappearance of the +2 and the introduction of additional terms. It's important to note that variables are case sensitive, meaning X and x represent different values.
caligari
Messages
2
Reaction score
0
The problem is
(x+y)^2+2(X+Y)+1

and the answer is supposed to be (X+1+Y)^2

I looked it up on this calculator but the second step makes no sense. First I do not know how the +2 disappears and where the extra (X+Y) come from. Also it's explanation when you click on the black box doesn't make sense. It says "For a quadratic equation of the form ax2+bx+c find u,v such that: u(v)=a(c) and u+v=c.
What are u and c and also in the next step it shows it as this
((x+y)+1))((x+y)^2+(x+y)) If the hint tells me to put it in ax2+bx+c then why are there only two terms in this. THis step makes no sense.
Here is the link to the calculator and problem

https://www.symbolab.com/solver/abs...right)^{2}+2\left(x+y\right)+1/?origin=button
 
Mathematics news on Phys.org
Hello and welcome to MHB, caligari! :D

We are given to factor:

$$(x+y)^2+2(x+y)+1$$

Now, suppose we let $u=x+y$, and then we have:

$$u^2+2u+1$$

You should recognize this as the square of $u+1$, hence:

$$u^2+2u+1=(u+1)^2$$

And so, back-substituting for $u$, we obtain:

$$(x+y)^2+2(x+y)+1=(x+y+1)^2$$
 
caligari said:
The problem is
(x+y)^2+2(X+Y)+1
Just a quick note:

Mathematics is "case sensitive." X and x are not the same variable.

-Dan
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K