 #1
chwala
Gold Member
 2,138
 281
 Homework Statement:

Solve for ##x## and ##y## in the given problem below;
##\dfrac {x+y}{xy}##+ ##\dfrac {1}{x+y}##=##\dfrac {5}{25}##
 Relevant Equations:
 equations
*Kindly note that i created this question (owned by me).
My Approach,
##\dfrac {(x+y)(4x+6y)}{(5x5y)}##=##1##
##(x+y)(4x+6y)=5x+5y##
##\dfrac {4x+6y}{5x+5y}##=##\dfrac {1}{x+y}##
to get the simultaneous equation,
##4x+6y=1##
##5x+5y=x+y##
...
##4x+6y=1##
##6x+4y=0##
giving us ##x=0.076923076##
##y= 0.115384615##
Any positive critic or alternative method is welcome. cheers guys
My Approach,
##\dfrac {(x+y)(4x+6y)}{(5x5y)}##=##1##
##(x+y)(4x+6y)=5x+5y##
##\dfrac {4x+6y}{5x+5y}##=##\dfrac {1}{x+y}##
to get the simultaneous equation,
##4x+6y=1##
##5x+5y=x+y##
...
##4x+6y=1##
##6x+4y=0##
giving us ##x=0.076923076##
##y= 0.115384615##
Any positive critic or alternative method is welcome. cheers guys
Last edited: