- #1

- 2,549

- 340

- Homework Statement
- Solve for ##x## and ##y## in the given problem below;

##\dfrac {x+y}{x-y}##+ ##\dfrac {1}{x+y}##=##\dfrac {5}{25}##

- Relevant Equations
- equations

*Kindly note that i created this question (owned by me).

My Approach,

##\dfrac {(x+y)(4x+6y)}{(5x-5y)}##=##-1##

##(x+y)(4x+6y)=-5x+5y##

##\dfrac {4x+6y}{-5x+5y}##=##\dfrac {1}{x+y}##

to get the simultaneous equation,

##4x+6y=1##

##-5x+5y=x+y##

...

##4x+6y=1##

##-6x+4y=0##

giving us ##x=0.076923076##

##y= 0.115384615##

Any positive critic or alternative method is welcome. cheers guys

My Approach,

##\dfrac {(x+y)(4x+6y)}{(5x-5y)}##=##-1##

##(x+y)(4x+6y)=-5x+5y##

##\dfrac {4x+6y}{-5x+5y}##=##\dfrac {1}{x+y}##

to get the simultaneous equation,

##4x+6y=1##

##-5x+5y=x+y##

...

##4x+6y=1##

##-6x+4y=0##

giving us ##x=0.076923076##

##y= 0.115384615##

Any positive critic or alternative method is welcome. cheers guys

Last edited: