MHB Solve Homogeneous Function f(x,y) w/ Euler's Rule

Click For Summary
The discussion revolves around solving for the value of a homogeneous function f(x,y) of order 3, given specific partial derivatives at different points. The user is confused about applying Euler's rule due to the differing points for f, fx, and fy. It is clarified that the function can be expressed as a linear combination of specific homogeneous functions, leading to a general form. The key insight is that the points (12,6), (2,1), and (8,4) are scalar multiples of each other, allowing the use of properties of homogeneous functions to derive the final answer of 1030.5. Understanding these relationships is crucial for solving the problem correctly.
Yankel
Messages
390
Reaction score
0
Hello,

I need some help with this question here, I'll explain why in a second. The question is:

f(x,y) is a homogeneous function of order 3. It is known that:

\[f_{x}(2,1)=7\]

and

\[f_{y}(8,4)=5\]

find f(12,6).

Now, I know of Euler's rule, which includes the partial derivatives, but in the question the (x,y) point if different between f, fx, and fy, I am confused. Can you assist please ? :confused:

Thanks !

(Final answer should be 1030.5)
 
Physics news on Phys.org
Yankel said:
Hello,

I need some help with this question here, I'll explain why in a second. The question is:

f(x,y) is a homogeneous function of order 3. It is known that:

\[f_{x}(2,1)=7\]

and

\[f_{y}(8,4)=5\]

find f(12,6).

Now, I know of Euler's rule, which includes the partial derivatives, but in the question the (x,y) point if different between f, fx, and fy, I am confused. Can you assist please ? :confused:

Thanks !

(Final answer should be 1030.5)

You can reasonably suppose that the unknown function has the form...

$\displaystyle f(x,y)= a\ x^{2}\ y + b\ x\ y^{2}\ (1)$

... so that is...

$\displaystyle f_{x} = 2\ a\ x\ y + b\ y^{2}$

$\displaystyle f_{y} = a\ x^{2} + 2\ b\ x\ y\ (2)$

Now a and b can be found inserting in (2) the conditions $f_{x} (2,1)=7$ and $f_{y}(8,4)=5$ and solving the 2 x 2 linear system...

Kind regards

$\chi$ $\sigma$
 
Thanks.

Can I take you back to the first stage ? How did you know / decide that this is the form of the function ? Based on what ?
 
Yankel said:
Thanks.

Can I take you back to the first stage ? How did you know / decide that this is the form of the function ? Based on what ?

Particular homogeneous functions of degree 3 are $f_{1}=x^{2}\ y$ and $f_{2}=x\ y^{2}$, so that any linear combination of them like $f(x,y) + c_{1}\ f_{1} + c_{2}\ f_{2}$ is also a homogeneous function of degree 3. But why don't include also $f_{3}= x^{3}$ and $f_{4} = y^{3}$?... that's right, and that means that the general case is $f(x, y) = c_{1}\ f_{1} + c_{2}\ f_{2} + c_{3}\ f_{3} + c_{4}\ f_{4}$ and Your problem has infinity solutions...

Kind regards

$\chi$ $\sigma$
 
Yankel said:
Hello,

I need some help with this question here, I'll explain why in a second. The question is:

f(x,y) is a homogeneous function of order 3. It is known that:

\[f_{x}(2,1)=7\]

and

\[f_{y}(8,4)=5\]

find f(12,6).

Now, I know of Euler's rule, which includes the partial derivatives, but in the question the (x,y) point if different between f, fx, and fy, I am confused. Can you assist please ? :confused:

Thanks !

(Final answer should be 1030.5)
A homogeneous function $f$ of order $k$ has the properties (i) its partial derivatives are homogeneous of order $k-1$; (ii) $f(\alpha \vec{v}) = \alpha^kf(\vec{v})$ (for any scalar $\alpha$ and vector $\vec{v}$); (iii) [Euler's theorem] $\vec{v}\cdot \nabla f(\vec{v}) = k f(\vec{v})$.

The useful feature of this question is that all the vectors are multiples of each other. In fact, $(12,6) = 6(2,1) = \frac32(8,4)$. By (i), the partial derivatives of $f$ are homogeneous of order $2$. It follows from (ii) that $f_x(12,6) = 6^2f_x(2,1)$ and $f_y(12,6) = \bigl(\frac32\bigr)^2f_y(8,4).$ You can then use (iii) to find $f(12,6).$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
2
Views
4K
Replies
7
Views
4K