Solve Inequality Challenge: Prove $35\sqrt{55}+55\sqrt{77}+77\sqrt{35}\gt 2310$.

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality challenge presented is to prove that \(35\sqrt{55}+55\sqrt{77}+77\sqrt{35}+35\sqrt{77}+55\sqrt{35}+77\sqrt{55} > 2310\). The discussion emphasizes the application of the Arithmetic Mean-Geometric Mean (AM-GM) inequality as a key tool in the proof. Participants confirm that using AM-GM effectively simplifies the terms and leads to a valid conclusion that the left side exceeds 2310. The proof is established through systematic application of AM-GM to the grouped terms.

PREREQUISITES
  • Understanding of the Arithmetic Mean-Geometric Mean (AM-GM) inequality
  • Familiarity with square root properties and manipulation
  • Basic algebraic skills for handling inequalities
  • Knowledge of mathematical proof techniques
NEXT STEPS
  • Study the application of AM-GM inequality in various mathematical contexts
  • Explore advanced inequality proofs in mathematical competitions
  • Learn about other inequalities such as Cauchy-Schwarz and Jensen's inequality
  • Practice solving similar inequality challenges to enhance problem-solving skills
USEFUL FOR

Mathematics students, competitive exam participants, and anyone interested in advanced algebraic techniques and inequality proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $35\sqrt{55}+55\sqrt{77}+77\sqrt{35}+35\sqrt{77}+55\sqrt{35}+77\sqrt{55}\gt 2310$.
 
Mathematics news on Phys.org
anemone said:
Prove $35\sqrt{55}+55\sqrt{77}+77\sqrt{35}+35\sqrt{77}+55\sqrt{35}+77\sqrt{55}\gt 2310$.

using AM GM ineqality we have unless a b and c same

$ab\sqrt{bc} + bc\sqrt{ca} + ca\sqrt{ab } \gt\ 3abc$
putting $a= 7, b= 5,c =11$ we get
$35 \sqrt{55} + 55\sqrt{77} + 77\sqrt{35 } \gt\ 3 * 7 * 5 * 11\cdots(1)$
putting $a= 5, b= 7,c =11$ we get
$35 \sqrt{77} + 77\sqrt{55} + 55\sqrt{35 } \gt\ 3 * 7 * 5 * 11\cdots(2)$
adding above we get
$35 \sqrt{55} + 55\sqrt{77} + 77\sqrt{35 } + 35 \sqrt{77} + 77\sqrt{55} + 55\sqrt{35 } \gt 3 * 5 * 7 * 11 * 2$ or 2310
 
anemone said:
Prove $35\sqrt{55}+55\sqrt{77}+77\sqrt{35}+35\sqrt{77}+55\sqrt{35}+77\sqrt{55}\gt 2310---(1)$.
I also use AM-GM inequality:
$(1)>6\times\sqrt[6]{35^3\times 55^3 \times 77^3}=6\sqrt {35\times 55 \times 77}=2310$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K