Solve Number Theory Problem to Find Time for Express Bus

  • Context: MHB 
  • Thread starter Thread starter Marcelo Arevalo
  • Start date Start date
  • Tags Tags
    Number theory Theory
Click For Summary
SUMMARY

The problem involves calculating the travel time of an Express bus from Station A to Station J, given that it departs 40 minutes after a Regular bus. The Express bus travels at 1.2 times the speed of the Regular bus and stops only once, while the Regular bus stops at every station. The equations derived from the travel times show that the Express bus takes 80 minutes to reach Station J, factoring in the 40-minute delay. The solution is confirmed through algebraic manipulation of the travel time equations.

PREREQUISITES
  • Understanding of basic algebra and equation manipulation
  • Knowledge of speed, distance, and time relationships
  • Familiarity with the concept of bus schedules and delays
  • Ability to solve linear equations
NEXT STEPS
  • Study the relationship between speed, distance, and time in more complex scenarios
  • Explore optimization problems involving travel times and schedules
  • Learn about systems of equations and their applications in real-world problems
  • Investigate the impact of varying speeds on travel time calculations
USEFUL FOR

Mathematicians, transportation planners, students studying algebra, and anyone interested in solving real-world problems involving travel times and schedules.

Marcelo Arevalo
Messages
39
Reaction score
0
On a particular bus line, between Station A and Station J, there are 8 other
stations. Two types of buses, Express and Regular, are used. The speed of an
Express bus is 1.2 times that of a Regular bus. Regular buses stop at every
station, while Express buses stop only once. A bus stops for 3 minutes. On a
particular day, a Regular bus departed from Station A. 40 minutes later an
Express bus departed from the same station. The two buses arrived at
Station J at the same time. How long did the Express bus take from Station A
to Station J?

- - - Updated - - -

As refer to answer key
the answer was 80
no idea how did they got it.
 
Mathematics news on Phys.org
The time $t$ (in minutes) traveled by the regular bus (including stops) is:

$$t_R=\frac{d}{v}+24$$

And for the express bus (including the 40 minute delay) is:

$$t_E=\frac{10d}{12v}+40$$

Since they arrived at the last stop at the same time, you can equate the two times ($t_R=t_E$), and then solve for $d$, and then substitute for $d$ into either equation above to find $t$. What do you find?
 
Is this the continuation of the given data above??
d/v + 24 = 10d/12v + 40
12d + 288v = 10d + 480v
2d = 480v -288v
d = 96vfrom 1 : tR = 96v/v + 24 = 120
from 2 : tE = 960v/12v + 40 = 120
 
My solution:

please comment, thank you.

Regular Speed = Y
Express Speed = 1.2Y

Time taken if Regular = x/y + 8(3)/60 (min/hr)
if Express = x/1.2y + 3/60 (min/hr)

Combining the two equation:
we have; x/y + 24/60 = x/1.2y + 3/60 + 40/60
x/y + 24/60 = x/1.2y + 43/60
x/y - x/1.2y = 19/60 multiply both sides by 6y
6x - 5x = 114/60 y
x = 1.9y

Substituting on Express = x/1.2y + 3/60 mins
= 1.9y/1.2y + 3/60
= 98 mins or 1hr 38mins
 
Marcelo Arevalo said:
Is this the continuation of the given data above??
d/v + 24 = 10d/12v + 40
12d + 288v = 10d + 480v
2d = 480v -288v
d = 96vfrom 1 : tR = 96v/v + 24 = 120
from 2 : tE = 960v/12v + 40 = 120

You have found the time it takes the regular bus...since the express bus left 40 minutes after the regular bus, you need to subtract 40 minutes to find the time it took the express bus.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
4K
  • · Replies 29 ·
Replies
29
Views
4K