MHB Solve Quadratic Equation: Find c-a Given p and q

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
Monoxdifly
MHB
Messages
288
Reaction score
0
Given p and q are the roots of the quadratic equation $$ax^2-5x+c=0$$ with $$a\neq0$$. If $$p,q,\frac1{8pq}$$ forms a geometric sequence and $$log_a18+log_ap=1$$, the value of c – a is ...
A. $$\frac13$$
B. $$\frac12$$
C. 3
D. 5
E. 7

Since $$p,q,\frac1{8pq}$$ is a geometric sequence, then:
$$\frac{q}{p}=\frac{\frac1{8pq}}q$$
$$\frac{q}{p}=\frac1{8pq^2}$$
$$q=\frac1{8q^2}$$
$$q^3=\frac18$$
$$q=\frac12$$

Also, since $$log_a18+log_ap=1$$, then:
$$log_a18p=log_aa$$
18p = a
$$p=\frac{a}{18}$$

This is where the real problem starts. No matter how I substitute, either it will cancel out the a's or p's, or becoming a quadratic equation with no real roots. What should I do?
 
Mathematics news on Phys.org
Additionally we have $a(x-p)(x-q)=ax^2 - a(p+q)x + apq = ax^2-5x+c$.
So $a(p+q)=5$ and $apq = c$.
If we substitute the $p$ and $q$ that we've found, we can find $a$ and an expression for $c$ in $a$, and finally $c-a$.
 
a(a/18)(1/2) = c
(a^2)/36 = c
a^2 = 36c

a(p + q) = 5
a(a/18 + 1/2) = 5
(a^2)/18 + 1/2 a = 5
36c/18 + 1/2 a = 5
2c + 1/2 a = 5
1/2 a = 5 - 2c
a = 10 - 4c
c - a = c - (10 - 4c) = -3c - 10
Sorry, still stuck.
 
$a(p+q) = 5 \implies a\left(\dfrac{a}{18}+\dfrac{1}{2}\right) = 5 \implies a^2+9a-90=0 \implies a = 6$ since $a>0$ (why?)

finally, you have $c = apq$

you should be able to finish from here

btw ... $c-(10-4c) \ne -3c-10$
 
Ah, I see. Thank you very much! :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top