MHB Solve Quadratic Equation: Find c-a Given p and q

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
AI Thread Summary
The discussion revolves around solving for the value of c - a in the quadratic equation ax^2 - 5x + c = 0, given that p and q are roots and form a geometric sequence with 1/(8pq). The geometric sequence leads to the conclusion that q = 1/2, and using the logarithmic equation log_a(18) + log_a(p) = 1, it is derived that p = a/18. Substituting these values into the equations a(p + q) = 5 and apq = c allows for the determination of a and c in terms of each other. Ultimately, the calculations reveal that c - a simplifies to a specific value, concluding the problem-solving process.
Monoxdifly
MHB
Messages
288
Reaction score
0
Given p and q are the roots of the quadratic equation $$ax^2-5x+c=0$$ with $$a\neq0$$. If $$p,q,\frac1{8pq}$$ forms a geometric sequence and $$log_a18+log_ap=1$$, the value of c – a is ...
A. $$\frac13$$
B. $$\frac12$$
C. 3
D. 5
E. 7

Since $$p,q,\frac1{8pq}$$ is a geometric sequence, then:
$$\frac{q}{p}=\frac{\frac1{8pq}}q$$
$$\frac{q}{p}=\frac1{8pq^2}$$
$$q=\frac1{8q^2}$$
$$q^3=\frac18$$
$$q=\frac12$$

Also, since $$log_a18+log_ap=1$$, then:
$$log_a18p=log_aa$$
18p = a
$$p=\frac{a}{18}$$

This is where the real problem starts. No matter how I substitute, either it will cancel out the a's or p's, or becoming a quadratic equation with no real roots. What should I do?
 
Mathematics news on Phys.org
Additionally we have $a(x-p)(x-q)=ax^2 - a(p+q)x + apq = ax^2-5x+c$.
So $a(p+q)=5$ and $apq = c$.
If we substitute the $p$ and $q$ that we've found, we can find $a$ and an expression for $c$ in $a$, and finally $c-a$.
 
a(a/18)(1/2) = c
(a^2)/36 = c
a^2 = 36c

a(p + q) = 5
a(a/18 + 1/2) = 5
(a^2)/18 + 1/2 a = 5
36c/18 + 1/2 a = 5
2c + 1/2 a = 5
1/2 a = 5 - 2c
a = 10 - 4c
c - a = c - (10 - 4c) = -3c - 10
Sorry, still stuck.
 
$a(p+q) = 5 \implies a\left(\dfrac{a}{18}+\dfrac{1}{2}\right) = 5 \implies a^2+9a-90=0 \implies a = 6$ since $a>0$ (why?)

finally, you have $c = apq$

you should be able to finish from here

btw ... $c-(10-4c) \ne -3c-10$
 
Ah, I see. Thank you very much! :D
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top