Solve Real Solutions of $(1-x_1)^2+\cdots+x_{2013}^2=\frac{1}{2014}$

  • Context: MHB 
  • Thread starter Thread starter magneto1
  • Start date Start date
Click For Summary
SUMMARY

The equation $(1-x_1)^2 +(x_1-x_2)^2+(x_2-x_3)^2 + \cdots + (x_{2012}-x_{2013})^2 + x_{2013}^2 = \frac{1}{2014}$ has a unique solution given by $x_i = 1 - \frac{i}{2014}$ for $1 \leq i \leq 2013$. This conclusion is derived using the Cauchy–Schwarz inequality, which shows that all differences $y_i = x_{i-1} - x_i$ must be equal to $\frac{1}{2014}$. However, the discussion indicates that there may be an additional set of solutions not initially considered.

PREREQUISITES
  • Understanding of Cauchy–Schwarz inequality
  • Familiarity with telescoping sums
  • Knowledge of real analysis concepts
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore alternative solutions to equations involving quadratic forms
  • Study the implications of the Cauchy–Schwarz inequality in optimization problems
  • Investigate the properties of sequences defined by recursive relations
  • Learn about the uniqueness of solutions in constrained optimization scenarios
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in solving complex equations involving multiple variables and inequalities.

magneto1
Messages
100
Reaction score
0
Find all the solutions in real numbers to the equation:
\[
(1-x_1)^2 +(x_1-x_2)^2+(x_2-x_3)^2 + \cdots + (x_{2012}-x_{2013})^2 + x_{2013}^2 = \frac{1}{2014},
\]
and show that you have all of the solutions that would satisfy the equation.
 
Physics news on Phys.org
[sp]and show that you have all of the solutions that would satisfy the equation.[/QUOTE]
Let $x_0 = 1$, $x_{2014} = 0$ and $y_i = x_{i-1} - x_i\ (1\leqslant i\leqslant 2014)$. Then $\sum y_i = x_0 - x_{2014} = 1-0 = 1$ (telescoping sum), and $\sum y_i^2 = \frac1{2014}.$ Let $z_i = 1\ (1\leqslant i\leqslant 2014)$. Then $1 = \sum y_i = \Bigl(\sum y_i\Bigr)^2 = \Bigl(\sum y_iz_i\Bigr)^2 \leqslant \sum y_i^2 \sum z_i^2 = \frac{2014}{2014} = 1$ (Cauchy–Schwarz). But equality holds in the Cauchy–Schwarz inequality only if $y_i = cz_i$ for some constant $c$. Thus all the $y_i$ are equal, and since their sum is $1$ they must all be equal to $\dfrac1{2014}.$ Therefore $x_i = 1 - \dfrac i{2014}\ (1\leqslant i\leqslant 2013)$, and that is the unique solution.[/sp]
 
Opalg said:
[sp]and show that you have all of the solutions that would satisfy the equation.
Let $x_0 = 1$, $x_{2014} = 0$ and $y_i = x_{i-1} - x_i\ (1\leqslant i\leqslant 2014)$. Then $\sum y_i = x_0 - x_{2014} = 1-0 = 1$ (telescoping sum), and $\sum y_i^2 = \frac1{2014}.$ Let $z_i = 1\ (1\leqslant i\leqslant 2014)$. Then $1 = \sum y_i = \Bigl(\sum y_i\Bigr)^2 = \Bigl(\sum y_iz_i\Bigr)^2 \leqslant \sum y_i^2 \sum z_i^2 = \frac{2014}{2014} = 1$ (Cauchy–Schwarz). But equality holds in the Cauchy–Schwarz inequality only if $y_i = cz_i$ for some constant $c$. Thus all the $y_i$ are equal, and since their sum is $1$ they must all be equal to $\dfrac1{2014}.$ Therefore $x_i = 1 - \dfrac i{2014}\ (1\leqslant i\leqslant 2013)$, and that is the unique solution.[/sp][/QUOTE]

Almost correct. There is actually another set of $x_i$ that would work.
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K