MHB Solve Recurrence: $s_n = 2_{s_n-1} - s_{n-2}$ | Discrete Math

shamieh
Messages
538
Reaction score
0
Derive an exact formula (solve the recurrence definition) for the following recursive sequence: $s_n = 2_{s_n-1} - s_{n-2}$ where $n \ge 2$, and $s_0 = 4$, $s_1 = 1$.

So I saw someone solving this by making it a differential equation or something?

How would you do that? should I do
let $\alpha = C_1$ let $\beta = C_2$ (because those symbols are ugly)

$r^2 - 2r + 1$ to get:

$r = 1$, $r = 1$

= $C_11^n + C_2n1^n$ ?
But how do I find my $C_1$ and $C_2$ ?

By the way this is a Discrete Mathematics course, not Calculus 4 course.
 
Physics news on Phys.org
For my solution I ended up with $S_n = 4*1^n - 3n1^n$
 
You have correctly identified that the characteristic root is $r=1$ of multiplicity 2, thus the closed-form is:

$$s_n=c_1+c_2n$$

Now, to determine the values of the parameters, you can use the initial conditions:

$$s_0=c_1+c_2\cdot0=4$$

$$s_2=c_1+c_2\cdot1=1$$

So, what do you get for the parameters when you solve the above system, and hence, what is the closed-form?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top