- #1
- 2,445
- 316
- Homework Statement
- Prove by induction or otherwise, that ##\sum_{r=1}^n r(3r-1)=n^3+n^2##
- Relevant Equations
- understanding of induction
My take;
##\sum_{r=1}^n r(3r-1)=n^3+n^2##
Let ##S_n=\sum_{r=1}^n r(3r-1)## and ##f(n)=n^3+n^2##
then, ##S_1 = 2## and ##f(1)=2##
hence the result is true when ##n=1##
Assume that ## S_m = f(m)## for some integer ##m## then,
## S_{m+1}= (m+1)(3(m+1)-1) +S_m ##
## S_{m+1}= (m+1)(3(m+1)-1) +m^3+m^2 ##
## S_{m+1}=m^3+m^2 +(m+1)(3m+2)##
## S_{m+1}= m^3+m^2+3m^2+5m+2 ##
## S_{m+1}=m^3+3m^2+3m+1+(m^2+2m+1)##
## S_{m+1}=(m+1)^3+(m+1)^2##
## S_{m+1}=f(m+1)##
##S_1=f(1)## , ##S_2=f(2)##
implying that, ##S_3=f(3)## for any integer ##n## thus, the result is true for all ##n##.
Your insight or any other approach welcome! Cheers!
##\sum_{r=1}^n r(3r-1)=n^3+n^2##
Let ##S_n=\sum_{r=1}^n r(3r-1)## and ##f(n)=n^3+n^2##
then, ##S_1 = 2## and ##f(1)=2##
hence the result is true when ##n=1##
Assume that ## S_m = f(m)## for some integer ##m## then,
## S_{m+1}= (m+1)(3(m+1)-1) +S_m ##
## S_{m+1}= (m+1)(3(m+1)-1) +m^3+m^2 ##
## S_{m+1}=m^3+m^2 +(m+1)(3m+2)##
## S_{m+1}= m^3+m^2+3m^2+5m+2 ##
## S_{m+1}=m^3+3m^2+3m+1+(m^2+2m+1)##
## S_{m+1}=(m+1)^3+(m+1)^2##
## S_{m+1}=f(m+1)##
##S_1=f(1)## , ##S_2=f(2)##
implying that, ##S_3=f(3)## for any integer ##n## thus, the result is true for all ##n##.
Your insight or any other approach welcome! Cheers!
Last edited: