- #1
Asphyxiated
- 264
- 0
Homework Statement
Solve the differential equation:
[tex] x \frac {dy}{dx} = y + e^{\frac {y}{x}} [/tex]
with the change of variable:
[tex] v = \frac {y}{x} [/tex]
Homework Equations
The Attempt at a Solution
I would just like to know if I have successfully solved the problem. Thanks!
First if we divide by x the equation becomes:
[tex] \frac {dy}{dx} = \frac {y}{x} + \frac {e^{\frac{y}{x}}}{x} [/tex]
then if:
[tex] v = \frac {y}{x} [/tex]
then:
[tex] \frac {dv}{dx} = \frac {x*\frac{dy}{dx} - y}{x^{2}}= \frac {\frac{dy}{dx}}{x}-\frac{y}{x^{2}} [/tex]
so:
[tex] \frac {dy}{dx}= \frac{dv}{dx}x+\frac {y}{x}=\frac{dv}{dx}x+v [/tex]
now I can substitute this back into the original differential equation:
[tex] \frac {dv}{dx}x+v=v+\frac{e^{v}}{x} [/tex]
the v on both sides will cancel out with subtraction so you get:
[tex] \frac{dv}{dx}x=\frac{e^{v}}{x} [/tex]
or
[tex] \frac{dv}{dx} = \frac {e^{v}}{x^{2}} [/tex]
this can be separated like so:
[tex] \frac {dv}{e^{v}}=\frac {dx}{x^{2}} [/tex]
[tex] \int e^{-v}dv= \int x^{-2}dx [/tex]
[tex] -e^{-v}=-\frac {1}{x} + c [/tex]
[tex] e^{-v}=\frac {1}{x} - c [/tex]
[tex] -v = ln ( \frac {1}{x} -c) [/tex]
[tex] v = -ln ( \frac {1}{x} -c) [/tex]
then to get the y of the original equation:
[tex] \frac {y}{x} = -ln ( \frac {1}{x} -c) [/tex]
[tex] y = -xln ( \frac {1}{x} -c) [/tex]