Solve Set Theory Question: Can Countably Infinite Set Have Uncountable Subsets?

Click For Summary
The discussion centers on whether a countably infinite set can have an uncountable collection of non-empty subsets with finite intersections. Participants agree that the set of all integers, being countably infinite, can indeed have uncountable subsets, with examples provided to illustrate finite intersections. The original poster expresses uncertainty about the rigor of their answer, while others suggest that the question has a straightforward solution. A hint is given to partition the set into disjoint subsets to demonstrate the concept more clearly. The overall consensus is that the question is interesting and solvable, despite the initial lack of mathematical rigor.
AlephNumbers
Messages
293
Reaction score
33
Lately I have been attempting (and failing miserably at) whatever sample Putnam questions I can find on the internet. Here is my latest endeavor. I found this question on the Kansas State University website, so I think I am allowed to post it. I must warn you that I know almost nothing about set theory.

Can a countably infinite set have an uncountable collection of non-empty subsets such that the intersection of any two of them is finite?

I know that the set of all integers is "countably" infinite.
Let I be the set containing all integers. The set I contains an infinite number of subsets each containing any number of the infinite number of elements in the set I, so the number of subsets of I is uncountable. However, any two subsets of I can be shown to have a finite intersection.
For example G={1,2,3,4} , F={3,4,5}
G and F have 2 elements in common; the elements 3 and 4 belong to both sets
The answer is yes.


I don't know if this would be a sufficient answer. It's awfully wordy and does not contain much mathematical rigor.
 
Physics news on Phys.org
What about A={2,4,6,8,...} and B={3,6,9,12,...} with their intersection {6,12,18,...}?
You need sets with infinite members, otherwise you do not get an uncountable number of subsets.

I like that question. It has a nice answer.
 
Last edited:
  • Like
Likes AlephNumbers
AlephNumbers said:
Lately I have been attempting (and failing miserably at) whatever sample Putnam questions I can find on the internet. Here is my latest endeavor. I found this question on the Kansas State University website, so I think I am allowed to post it. I must warn you that I know almost nothing about set theory.

Can a countably infinite set have an uncountable collection of non-empty subsets such that the intersection of any two of them is finite?

I know that the set of all integers is "countably" infinite.
Let I be the set containing all integers. The set I contains an infinite number of subsets each containing any number of the infinite number of elements in the set I, so the number of subsets of I is uncountable. However, any two subsets of I can be shown to have a finite intersection.
For example G={1,2,3,4} , F={3,4,5}
G and F have 2 elements in common; the elements 3 and 4 belong to both sets
The answer is yes.


I don't know if this would be a sufficient answer. It's awfully wordy and does not contain much mathematical rigor.

It doesn't contain any rigor. And tackling Putnam questions while saying you know almost nothing about set theory is a bold move. I agree with mfb that it is a nice question and does have an easy answer. Here's a hint. You can split ##I## into three disjoint sets where two contain a countably infinite number of members and one has a finite number. Show that and use it.
 
Last edited:
Hmm. I think I'll put this one on the backburner. Thank you for the input.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
5
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K