Solve Simultaneous Equations: Find X & Y Values

  • Context: MHB 
  • Thread starter Thread starter Casio1
  • Start date Start date
  • Tags Tags
    Simultaneous equations
Click For Summary

Discussion Overview

The discussion revolves around solving a pair of simultaneous equations using the method of substitution. Participants explore the steps involved in manipulating the equations, addressing confusion regarding the algebraic process and the handling of fractions.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant expresses confusion about the steps taken after substituting for y in the equations, particularly regarding the manipulation of fractions and the distribution of terms.
  • Another participant corrects the first participant's approach, indicating that they made errors in their algebraic manipulation and provides a clearer method to arrive at the solution.
  • There is a request for clarification on how to combine terms involving fractions, specifically how to add coefficients of x correctly.
  • Some participants discuss the importance of maintaining clarity in each step of the algebraic process to avoid misunderstandings.
  • One participant attempts to clarify the rules of adding fractions and how they apply to the coefficients in the equations.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the initial confusion regarding the algebraic steps. While some provide corrections and clarifications, the discussion reflects ongoing uncertainty about the proper application of algebraic rules.

Contextual Notes

Participants express uncertainty about specific algebraic manipulations, particularly with fractions and the distribution of terms. There are unresolved questions about the handling of coefficients and the steps leading to the final values of x and y.

Casio1
Messages
86
Reaction score
0
I have been trying to find the values of x and y for these simultaineous equations by the method of substitution, but I can only get so far before I become confused what to do next?

2x + 3y = 5
5x - 2y = - 16

I worked out;

y = 1/3(5 - 2x) and combined them

y = 5x - 2/3(5 - 2x) = - 16 then I worked out the brackets

y = 5x - 10/3 + 4/3x = - 16. From here I become somewhat misunderstood as to the way things are done.

I think from here I require to convert the equations into a linear equation without the fractions, but am unsure?

(5 + 4/3)x - 10/3 = - 16. I don't know what the rule is to get to this stage from the last stage above?

If I multiply out the bracket above I get;

5x + x - 2 = - 16

6x = - 16 + 2

6x = -14

x = - 2.33

Now somewhere I am misunderstanding something because x = 2.

I also know that y = 3, but until I am clear on the method to find x there is no point me trying to go forward from finding x?

Any help much appreciated

Kind regards

Casio:confused:
 
Mathematics news on Phys.org
Re: Simultaineous Equations

You were fine up to here:

(5 + 4/3)x - 10/3 = - 16

When you distributed the x, made some illegal moves...

I would combine within the parentheses to obtain:

(19/3)x - 10/3 = -16

Multiply through by 3:

19x - 10 = -48

19x = -38

x = -2

Now, use either original equation, I'll use the first, to find y:

2(-2) + 3y = 5

3y = 9

y = 3
 
Re: Simultaineous Equations

Please advise just to remove some confusion on my behalf what happened to the additional x here;

5x - 10/3 + 4/3x = - 16

at this point the 5x moved to 4/3x to become;

5 + 4/3x, then that became 19/3

what rule is used to make that move?

what happened to the second x?

Kind regards

Casio:confused:
 
Both 5x and (4/3)x are contained in their sum of (19/3)x.

It's like if you had 2x + 3x = 5x.
 
Hello, Casio!

\text{Substitution: }\;\begin{array}{cccccc}2x + 3y &=& 5 & (1) \\ 5x - 2y &=& \text{-} 16 & (2) \end{array}
I would solve it like this . . .Solve (1) for y\!:\;y \:=\:\frac{5 - 2x}{3}

Substitute into (2): .5x - 2\left(\frac{5-2x}{3}\right) \:=\:\text{-}16

Multiply by 3: .15x - 2(5-2x) \:=\:\text{-}48

. . . . . . . . . . . .15x - 10 + 4x \:=\:\text{-}48

. . . . . . . . . . . . . . . . . . .19x \:=\:-38

. . . . . . . . . . . . . . . . . . . . x \:=\:-2Substitute into (1): .2(\text{-}2) + 3y \:=\:5

. . . . . . . . . . . . . . . . -4 + 3y \:=\:5

. . . . . . . . . . . . . . . . . . . . 3y \:=\:9

. . . . . . . . . . . . . . . . . . . . . y \:=\:3

Answer: .\begin{Bmatrix}x &=& \text{-}2 \\ y&=& 3 \end{Bmatrix}
 
Re: Simultaineous Equations

Casio said:
Please advise just to remove some confusion on my behalf what happened to the additional x here;

5x - 10/3 + 4/3x = - 16

at this point the 5x moved to 4/3x to become;

5 + 4/3
No, it didn't. It became (5+ 4/3)x

then that became 19/3

what rule is used to make that move?
Adding fractions! The coefficient of x is 5+ 4/3 and you add fractions by getting a common denominator: 5+ \frac{4}{3}= \frac{5}{1}+ \frac{4}{3}= \frac{3(5)}{3(1)}+ \frac{4}{3}= \frac{15}{3}+ \frac{4}{3}= \frac{19}{3}
(5+ \frac{4}{3})x= \frac{19}{3}x

what happened to the second x?
I don't know. Apparently, you just didn't write it!

Kind regards

Casio:confused:
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K