MHB Solve Simultaneous Equations: Find X & Y Values

Casio1
Messages
86
Reaction score
0
I have been trying to find the values of x and y for these simultaineous equations by the method of substitution, but I can only get so far before I become confused what to do next?

2x + 3y = 5
5x - 2y = - 16

I worked out;

y = 1/3(5 - 2x) and combined them

y = 5x - 2/3(5 - 2x) = - 16 then I worked out the brackets

y = 5x - 10/3 + 4/3x = - 16. From here I become somewhat misunderstood as to the way things are done.

I think from here I require to convert the equations into a linear equation without the fractions, but am unsure?

(5 + 4/3)x - 10/3 = - 16. I don't know what the rule is to get to this stage from the last stage above?

If I multiply out the bracket above I get;

5x + x - 2 = - 16

6x = - 16 + 2

6x = -14

x = - 2.33

Now somewhere I am misunderstanding something because x = 2.

I also know that y = 3, but until I am clear on the method to find x there is no point me trying to go forward from finding x?

Any help much appreciated

Kind regards

Casio:confused:
 
Mathematics news on Phys.org
Re: Simultaineous Equations

You were fine up to here:

(5 + 4/3)x - 10/3 = - 16

When you distributed the x, made some illegal moves...

I would combine within the parentheses to obtain:

(19/3)x - 10/3 = -16

Multiply through by 3:

19x - 10 = -48

19x = -38

x = -2

Now, use either original equation, I'll use the first, to find y:

2(-2) + 3y = 5

3y = 9

y = 3
 
Re: Simultaineous Equations

Please advise just to remove some confusion on my behalf what happened to the additional x here;

5x - 10/3 + 4/3x = - 16

at this point the 5x moved to 4/3x to become;

5 + 4/3x, then that became 19/3

what rule is used to make that move?

what happened to the second x?

Kind regards

Casio:confused:
 
Both 5x and (4/3)x are contained in their sum of (19/3)x.

It's like if you had 2x + 3x = 5x.
 
Hello, Casio!

\text{Substitution: }\;\begin{array}{cccccc}2x + 3y &=& 5 & (1) \\ 5x - 2y &=& \text{-} 16 & (2) \end{array}
I would solve it like this . . .Solve (1) for y\!:\;y \:=\:\frac{5 - 2x}{3}

Substitute into (2): .5x - 2\left(\frac{5-2x}{3}\right) \:=\:\text{-}16

Multiply by 3: .15x - 2(5-2x) \:=\:\text{-}48

. . . . . . . . . . . .15x - 10 + 4x \:=\:\text{-}48

. . . . . . . . . . . . . . . . . . .19x \:=\:-38

. . . . . . . . . . . . . . . . . . . . x \:=\:-2Substitute into (1): .2(\text{-}2) + 3y \:=\:5

. . . . . . . . . . . . . . . . -4 + 3y \:=\:5

. . . . . . . . . . . . . . . . . . . . 3y \:=\:9

. . . . . . . . . . . . . . . . . . . . . y \:=\:3

Answer: .\begin{Bmatrix}x &=& \text{-}2 \\ y&=& 3 \end{Bmatrix}
 
Re: Simultaineous Equations

Casio said:
Please advise just to remove some confusion on my behalf what happened to the additional x here;

5x - 10/3 + 4/3x = - 16

at this point the 5x moved to 4/3x to become;

5 + 4/3
No, it didn't. It became (5+ 4/3)x

then that became 19/3

what rule is used to make that move?
Adding fractions! The coefficient of x is 5+ 4/3 and you add fractions by getting a common denominator: 5+ \frac{4}{3}= \frac{5}{1}+ \frac{4}{3}= \frac{3(5)}{3(1)}+ \frac{4}{3}= \frac{15}{3}+ \frac{4}{3}= \frac{19}{3}
(5+ \frac{4}{3})x= \frac{19}{3}x

what happened to the second x?
I don't know. Apparently, you just didn't write it!

Kind regards

Casio:confused:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
7
Views
1K
Replies
5
Views
2K
Replies
8
Views
1K
Replies
2
Views
2K
Replies
18
Views
4K
Replies
2
Views
1K
Back
Top