Solve the equation 8x^2−2xy^2=6y=3x^2+3x^3y^2

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around solving the equation \(8x^2 - 2xy^2 = 6y = 3x^2 + 3x^3y^2\) for real numbers \(x\) and \(y\). The scope includes mathematical reasoning and problem-solving approaches.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Post 1 presents the equation to be solved without any initial solutions or methods.
  • Post 2 reiterates the equation and introduces a personal solution attempt, although the solution is not detailed.
  • Post 3 expresses appreciation for a solution provided by a participant named Albert, indicating some level of engagement with the proposed solution.
  • Post 4 also mentions a solution attempt but does not provide specifics.

Areas of Agreement / Disagreement

The discussion does not indicate a consensus or resolution regarding the solutions to the equation, as multiple participants have presented their attempts without clear agreement or validation of correctness.

Contextual Notes

Details of the proposed solutions are not provided, leaving the mathematical steps and reasoning behind them unresolved.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all the real numbers $x$ and $y$, that satisfy the following equations:

\[8x^2-2xy^2 = 6y = 3x^2+3x^3y^2\]
 
Mathematics news on Phys.org
lfdahl said:
Find all the real numbers $x$ and $y$, that satisfy the following equations:

\[8x^2-2xy^2 = 6y = 3x^2+3x^3y^2\]
my solution:
let $A=8x^2-2xy^2 $
$B= 6y$
$C= 3x^2+3x^3y^2$
from $A,B$ we have $xy^2+3y-4x^2=0-----(1)$
from $B,C$ we have $x^3y^2-2y+x^2=0-----(2)$
$(1)+(2)\times 4$ we get:
$y^2(4x^3+x)=5y$
so $y=0,x=0 $ or $y=\dfrac {5}{4x^3+x}---(3)$
put (3) to (1) or (2) we obtain all the solutions
but a simpler way :
for (3) is symmetric to the line : $y=x$
the solutions of A,B,C must lie on the line $x-y=0$
we may set $y=x$ and from (A)(B) we get:
$8x^2-2x^3=6x$
$x(x-1)(x-3)=0,$
that is $x=0,1,3$
but $x=3$ does not satisfy (2)
so all the real numbers $x$ and $y$, that satisfy the given equations:
are $(x,y)=(0,0)$ or $(x,y)=(1,1)$
 
Albert said:
my solution:
let $A=8x^2-2xy^2 $
$B= 6y$
$C= 3x^2+3x^3y^2$
from $A,B$ we have $xy^2+3y-4x^2=0-----(1)$
from $B,C$ we have $x^3y^2-2y+x^2=0-----(2)$
$(1)+(2)\times 4$ we get:
$y^2(4x^3+x)=5y$
so $y=0,x=0 $ or $y=\dfrac {5}{4x^3+x}---(3)$
put (3) to (1) or (2) we obtain all the solutions
but a simpler way :
for (3) is symmetric to the line : $y=x$
the solutions of A,B,C must lie on the line $x-y=0$
we may set $y=x$ and from (A)(B) we get:
$8x^2-2x^3=6x$
$x(x-1)(x-3)=0,$
that is $x=0,1,3$
but $x=3$ does not satisfy (2)
so all the real numbers $x$ and $y$, that satisfy the given equations:
are $(x,y)=(0,0)$ or $(x,y)=(1,1)$

Bravo, Albert! A very nice solution! Thankyou for your participation.
 
Albert said:
my solution:
let $A=8x^2-2xy^2 $
$B= 6y$
$C= 3x^2+3x^3y^2$
from $A,B$ we have $xy^2+3y-4x^2=0-----(1)$
from $B,C$ we have $x^3y^2-2y+x^2=0-----(2)$
$(1)+(2)\times 4$ we get:
$y^2(4x^3+x)=5y$
so $y=0,x=0 $ or $y=\dfrac {5}{4x^3+x}---(3)$
put (3) to (1) or (2) we obtain all the solutions
but a simpler way :
for (3) is symmetric to the line : $y=x$
the solutions of A,B,C must lie on the line $x-y=0$
we may set $y=x$ and from (A)(B) we get:
$8x^2-2x^3=6x$
$x(x-1)(x-3)=0,$
that is $x=0,1,3$
but $x=3$ does not satisfy (2)
so all the real numbers $x$ and $y$, that satisfy the given equations:
are $(x,y)=(0,0)$ or $(x,y)=(1,1)$
how do you know that this the only real solution??

For e.g the equation: ax+b=c ,has a solution : x =c-b/a ,a different to zero.

But we can prove that this solution is unique

The same we can prove for the equation :$$ax^2+bx+c=0$$,$$a\neq 0$$

The OP wants all the real solutions
 
Last edited by a moderator:
solakis said:
how do you know that this the only real solution??

For e.g the equation: ax+b=c ,has a solution : x =c-b/a ,a different to zero.

But we can prove that this solution is unique

The same we can prove for the equation :$$ax^2+bx+c=0$$,$$a\neq 0$$

The OP wants all the real solutions
$A,B\,\,and \,C $ are not symmetric to $y=x$
but their solutions $y=\dfrac {5}{4x^3+x}$ do
so they must situate on $x-y=0$, or the line :$x=y$
with this in mind and searching back we can find all the solutions
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K