MHB Solve the equation 8x^2−2xy^2=6y=3x^2+3x^3y^2

  • Thread starter Thread starter lfdahl
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on solving the equation set defined by \(8x^2 - 2xy^2 = 6y = 3x^2 + 3x^3y^2\). Participants engaged in finding all real number pairs \((x, y)\) that satisfy these equations. Albert provided a solution that was well-received by other forum members, highlighting the collaborative nature of the problem-solving process. The equations involve polynomial expressions that require algebraic manipulation for resolution.

PREREQUISITES
  • Understanding of polynomial equations and algebraic manipulation
  • Familiarity with systems of equations
  • Knowledge of real number properties
  • Basic skills in mathematical proof techniques
NEXT STEPS
  • Explore methods for solving polynomial equations
  • Learn about systems of equations and their solutions
  • Study algebraic manipulation techniques for complex expressions
  • Investigate real number properties in mathematical contexts
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving complex polynomial equations will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all the real numbers $x$ and $y$, that satisfy the following equations:

\[8x^2-2xy^2 = 6y = 3x^2+3x^3y^2\]
 
Mathematics news on Phys.org
lfdahl said:
Find all the real numbers $x$ and $y$, that satisfy the following equations:

\[8x^2-2xy^2 = 6y = 3x^2+3x^3y^2\]
my solution:
let $A=8x^2-2xy^2 $
$B= 6y$
$C= 3x^2+3x^3y^2$
from $A,B$ we have $xy^2+3y-4x^2=0-----(1)$
from $B,C$ we have $x^3y^2-2y+x^2=0-----(2)$
$(1)+(2)\times 4$ we get:
$y^2(4x^3+x)=5y$
so $y=0,x=0 $ or $y=\dfrac {5}{4x^3+x}---(3)$
put (3) to (1) or (2) we obtain all the solutions
but a simpler way :
for (3) is symmetric to the line : $y=x$
the solutions of A,B,C must lie on the line $x-y=0$
we may set $y=x$ and from (A)(B) we get:
$8x^2-2x^3=6x$
$x(x-1)(x-3)=0,$
that is $x=0,1,3$
but $x=3$ does not satisfy (2)
so all the real numbers $x$ and $y$, that satisfy the given equations:
are $(x,y)=(0,0)$ or $(x,y)=(1,1)$
 
Albert said:
my solution:
let $A=8x^2-2xy^2 $
$B= 6y$
$C= 3x^2+3x^3y^2$
from $A,B$ we have $xy^2+3y-4x^2=0-----(1)$
from $B,C$ we have $x^3y^2-2y+x^2=0-----(2)$
$(1)+(2)\times 4$ we get:
$y^2(4x^3+x)=5y$
so $y=0,x=0 $ or $y=\dfrac {5}{4x^3+x}---(3)$
put (3) to (1) or (2) we obtain all the solutions
but a simpler way :
for (3) is symmetric to the line : $y=x$
the solutions of A,B,C must lie on the line $x-y=0$
we may set $y=x$ and from (A)(B) we get:
$8x^2-2x^3=6x$
$x(x-1)(x-3)=0,$
that is $x=0,1,3$
but $x=3$ does not satisfy (2)
so all the real numbers $x$ and $y$, that satisfy the given equations:
are $(x,y)=(0,0)$ or $(x,y)=(1,1)$

Bravo, Albert! A very nice solution! Thankyou for your participation.
 
Albert said:
my solution:
let $A=8x^2-2xy^2 $
$B= 6y$
$C= 3x^2+3x^3y^2$
from $A,B$ we have $xy^2+3y-4x^2=0-----(1)$
from $B,C$ we have $x^3y^2-2y+x^2=0-----(2)$
$(1)+(2)\times 4$ we get:
$y^2(4x^3+x)=5y$
so $y=0,x=0 $ or $y=\dfrac {5}{4x^3+x}---(3)$
put (3) to (1) or (2) we obtain all the solutions
but a simpler way :
for (3) is symmetric to the line : $y=x$
the solutions of A,B,C must lie on the line $x-y=0$
we may set $y=x$ and from (A)(B) we get:
$8x^2-2x^3=6x$
$x(x-1)(x-3)=0,$
that is $x=0,1,3$
but $x=3$ does not satisfy (2)
so all the real numbers $x$ and $y$, that satisfy the given equations:
are $(x,y)=(0,0)$ or $(x,y)=(1,1)$
how do you know that this the only real solution??

For e.g the equation: ax+b=c ,has a solution : x =c-b/a ,a different to zero.

But we can prove that this solution is unique

The same we can prove for the equation :$$ax^2+bx+c=0$$,$$a\neq 0$$

The OP wants all the real solutions
 
Last edited by a moderator:
solakis said:
how do you know that this the only real solution??

For e.g the equation: ax+b=c ,has a solution : x =c-b/a ,a different to zero.

But we can prove that this solution is unique

The same we can prove for the equation :$$ax^2+bx+c=0$$,$$a\neq 0$$

The OP wants all the real solutions
$A,B\,\,and \,C $ are not symmetric to $y=x$
but their solutions $y=\dfrac {5}{4x^3+x}$ do
so they must situate on $x-y=0$, or the line :$x=y$
with this in mind and searching back we can find all the solutions
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
991